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Abstract Background/purpose: Artificial intelligence (AI) has been widely used in medicine,
including orthodontics. The aim of this study was to investigate the training process of a
cascaded Convolutional Neural Network (CNN), built for landmark detection on various quali-
ties of lateral cephalograms and to determine the speed, reliability and clinical accuracy of an
algorithm for orthodontic diagnosis.
Materials and methods: The CNN model was trained on a total of 1600 lateral cephalograms.
After each training datasets (input of 400, 800, 1200, 1600 images) were added, the model was
evaluated on a test set containing 78 images of varying quality. We measured the accuracy of
AI-based landmark detection by statistical analysis of intra- and interexaminer distance errors,
as well as examiner versus model predictions, furthermore by prognosis of consecutive diag-
nostic failures.
Results: There was a clear improvement in time efficiency (5.25 min), and substantial im-
provements were observed during the training process. In terms of accuracy, based on
Euclidean distance error measurements, the best model provided more consistent dot tracing
than two different examiners or the same examiner on two different occasions. Angular (0.05�

e1.86�) and proportional (3.14%) errors, measured by the best model, were considered clini-
cally acceptable.
Conclusion: The application of a proper AI-algorithm for orthodontic cephalometric analysis
results in lower variability between models than the variability observed among experts. AI
predictions supported the examiners in finding the correct location of the specific landmarks
more accurately and in less time as the training of the automatic prediction model improved.
Further research could investigate the therapeutic consequences.
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Table 1 Names and abbreviations of the cephalometric
landmarks detected on all digital radiographic images.

Number Name Abbreviation

Calibration point 1 Cal 1
Calibration point 2 Cal 2

1. Mesial apex of mandibular 6 1LoMma
2. Mesial apex of maxillary 6 1UpMma
3. Downs A-point A
4. Articulare Ar
5. Downs B-point B
6. Basion Ba
7. Columella Co
8. Condylion Cond
9. Center of symphysis D
10. Soft tissue glabella Gl’
11. Gnathion Gn
12. Soft tissue gnathion Gn’
13. Infradentale Id
14. Mandibular notch point Im
15. Lower incisor apex La
16. Lower incisor crown tip Li
17. Lower lip anterior point Ll
18. Upper incisor labial outline Ls1u
19. Mesial cusp of maxillary 6 M6lo
20. Menton Me
21. Soft tissue menton Me’
22. Nasion N
23. Soft tissue nasion N’
24. Orbitale Or
25. Supra pogonion PM
26. Pronasale Pn
27. Porion Po
28. Pogonion PoG
29. Prosthion Pr
30. Pterygoid point Pt
31. Sella turcica midpoint S
32. Center of sella’s entry Se
33. Submentale Sm
34. Subnasale Sn
35. Posterior spine nasal SnA
36. Anterior spine nasal SnP
37. Stomion inferius Stm-i
38. Stomion superius Stm-s
39. Tangent 1/Gonion posterior T1
40. Tangent 2/Gonion Inferior T2
41. Trichion Tr
42. Mesial cusp of maxillary 6 U6
43. Distal contact of maxillary 6 U6d
44. Upper incisor apex Ua
45. Upper Incisor crown tip Ui
46. Upper lip anterior point Ul
47. Condylion posterior ppCond
48. Soft tissue pogonion sPoG
Introduction

Machine Learning (ML) plays a crucial role in a wide range of
modern professions, including medicine and orthodon-
tics.1,2 Technological innovations are the driving forces
behind the rapid advancement of modern dentistry, as re-
flected in studies of the last decades, focusing on the use of
Artificial Intelligence (AI) tools to optimize particular
diagnostic workflows.1,3

Numerous reviews show promising results in the appli-
cation of AI in the early prediction of treatment needs, in
determining the demand for orthognathic surgery or tooth
extraction, in predicting cephalometric landmarks on 2D or
3D radiographs, as well as in identifying maturational
properties of a growing patient.2e4 The reliability of these
AI-assisted software applications is influenced by several
factors; beside others, by the quality of the input dataset,
the number of training cycles of the algorithm, and the
characteristics of the algorithm itself. According to the
latest cephalometric study in Journal of Dental Sciences,
shared by Lee et al.,4 the standardization of manual land-
mark detection, image quality, and image sample might
affect tool performance. Kim et al.5 highlight that the
variability of errors in these models built for automated
cephalometric analysis goes beyond individual landmarks,
algorithms, or training image quantities, but also identifies
inconsistencies across institutional outcomes.5

Statistical analysis of AI-assisted cephalometric evalua-
tions have been conducted using various algorithms trained
on diverse quantities of training sets.5e7 Some studies show
favorable outcomes even with limited data (nZ 1028),6 and
others achieve comparable results with larger input datasets
(e.g. nZ 1792 or nZ 3150).5,7 According to Kang et al.,8 the
mean distance error in determining cephalometric land-
marks by different AI-algorithms ranges from 1.1 to 4.09mm,
based on findings from 3 reviews, summarisingmore than 165
studies on the topic.8 Distance errors between manually
annotated and model-predicted landmark coordinates are
typically defined as Euclidean distances.5,9 Assessing the
clinical relevance of landmark detection accuracy in ceph-
alometric analysis is challenging as subjective diagnostic
estimations of clinicians often contain meaningful errors,
evenwith repeated evaluations of the sameexaminer. AnaR.
Durao et al.10 have revealed that despite a considerable
number of publications on cephalometric analysis (nZ 968),
only a limited number of studies have examined the validity
and reliability (n Z 16) of 2D landmark detection on cepha-
lograms, as articles prioritise 3D assessments.10 The inte-
gration of AI prediction models into everyday processes has
substantially altered this landscape over the past deca-
de.11e13 However, there are still insufficient data on diag-
nostically and therapeutically relevant metrics measured by
various tools for cephalometric analysis.

Most studies examine a maximum of 20 landmarks and
disregard difficult-to-detect profiles and tangent points that
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Figure 1 Interface for manual evaluation in the OnyxCeph3TM software.
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are used by specialists in clinical practice but can degrade
statistics. This study considers 48 cephalometric landmarks
(Table 1) and compares evaluations of images of varying
quality, using models trained on four datasets of different
sizes. The evaluation with these landmarks covers dental,
dentoalveolar- and alveolar deviations examined, based on
the Rickett’s andHasund analysis, and can be used to analyse
the entire skull, jaw relationships, dentition and profile.

Among the experiments with available software solu-
tions, the model we tested is notable for its comprehen-
sive, criteria-based assessments that directly investigate
Figure 2 Interface for manual evalua
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the physician-AI relationship. To minimize clinician-induced
errors in landmark detection accuracy, measurements were
repeated eight times; twice by two independent experts on
four separate occasions.

In this study, our aim was to prove the significance of the
quality and quantity of training data for the accuracy and
the time efficiency of a ML model (hereafter‘AI’) in clinical
applications, using a relatively large dataset of 1678 im-
ages. However, we hypothesised that after a certain
amount of training data, further increasing the training
datasets (TD) yields marginal improvements. Our objective
tion in the Ceph Assistant software.



Table 2 Distortion on evaluability of test images by
quality scaling with 1e5 scores.

Number of
the X-ray

Evaluability
score of
the X-ray

Gender Age

1 3 Female 17
2 5 Male 29
3 3 Female 48
4 3 Female 9
5 3 Female 9
6 3 Male 22
7 3 Male 13
8 5 Female 16
9 3 Male 16
10 1 Male 16
11 3 Female 11
12 2 Male 14
13 3 Female 18
14 3 Female 18
15 3 Female 14
16 3 Male 7
17 1 Male 13
18 5 Female 15
19 3 Male 10
20 3 Female 10
21 4 Female 10
22 3 Male 13
23 3 Male 14
24 3 Female 14
25 3 Female 17
26 4 Male 11
27 3 Female 14
28 4 Female 18
29 3 Female 17
30 2 Male 11
31 4 Male 16
32 3 Female 14
33 3 Male 12
34 3 Female 8
35 2 Female 11
36 2 Female 10
37 3 Female 13
38 2 Female 14
39 3 Male 16
40 3 Male 16
41 4 Male 13
42 3 Male 15
43 4 Female 15
44 2 Female 16
45 3 Female 15
46 3 Male 15
47 2 Male 16
48 3 Male 13
49 2 Male 15
50 4 Female 8
51 3 Male 10
52 3 Female 10
53 4 Male 16
54 2 Male 15

(continued on next page)

Table 2 (continued )

Number of
the X-ray

Evaluability
score of
the X-ray

Gender Age

55 3 Male 12
56 3 Male 12
57 2 Female 15
58 2 Female 12
59 4 Male 17
60 3 Male 7
61 3 Male 14
62 4 Female 16
63 2 Female 10
64 3 Female 14
65 3 Male 12
66 3 Female 13
67 2 Male 15
68 4 Male 9
69 3 Male 10
70 4 Female 16
71 3 Female 14
72 2 Female 24
73 4 Male 9
74 3 Male 13
75 4 Female 17
76 4 Female 14
77 2 Female 13
78 5 Female 12

The scaling process in this study follows established method-
ologies for image analysis:
Scaling explanation:
Score 5: Adequately assessed, high-resolution image (total: 2).
Score 4: Adequately assessed, high-resolution image; however,
the presence of orthodontic appliances during image acquisition
and other factors may have contributed to visible blurry areas,
though these are minimally distracting and did not affect
analysis integrity (total: 15).
Score 3: Blurred double lines hinder accurate area evaluation,
suggesting potential patient movement during image acquisi-
tion, complicating analysis (total: 42).
Score 2: Image quality is sub-optimal, with insufficient detail,
making it challenging to accurately identify cranial or profile
landmarks (total: 17).
Score 1: Image resolution is inadequate, resulting in poor
quality and insufficient detail, thereby making it difficult to
accurately identify both cranial and profile landmarks (total:2).
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was to show on clinically relevant data that cephalometric
landmark predictions of an AI-model facilitate more accu-
rate angle and proportional calculations, thereby enabling
a proper orthodontic diagnosis in a shorter time. It presents
the novel finding, that given sufficient and high-quality
data, an AI-model can serve as a precise diagnostic tool in
both spatial and temporal contexts, outlining its advan-
tages and potential drawbacks.
Materials and methods

The study was approved by the IRB of Semmelweis Uni-
versity, Budapest, Hungary (SE-RKEB number:112/2021).
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Due to the retrospective nature of the study, the ethics
committee waived the requirement for informed consent.

Using four different dataset quantities, we trained a new
AI-model developed by Ceph Assistant Ltd. (Budapest,
Hungary) and evaluated it on a test dataset. We expected
the accuracy and time efficiency of the model to improve as
the TD increased, reflecting this progress in our results.

Data collection

Regardless of whether the radiographs showed dentures or
orthodontic appliances, a total of 1678 2D lateral cepha-
lometric images (2485 � 2232), all uniformly down-
sampled to a pixel size of 512 � 512, were randomly
selected and anonymously downloaded from the Onyx-
Ceph3TM (Chemnitz, Germany) server at Semmelweis
University, Department of Paediatric Dentistry and Or-
thodontics (Budapest, Hungary)14 (hereafter‘Clinic’).
Altogether, 1600 cephalograms were manually (using
mouse-controlled cursor) evaluated by the orthodontists
working at the Clinic based on Hasund and Rickett’s
analysis in the OnyxCeph3TM software (Fig. 1). Calibration
Figure 3 Violin plot diagram on time spent by the two examiner
Ceph Assistant model by varying amounts of training data (TD),
examiner (AI-assisted).
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and resolution elements of the recordings were checked,
and the cephalometric evaluations were verified by three
experienced professionals. The X and Y coordinates of
each of the 48 landmarks were saved separately, exported
and used to train the Ceph Assistant AI-algorithm.13

A test dataset consisting of 78 cephalograms was used,
randomly selected from a total of 1678 images. To prove
the representativeness of the test dataset, cross-validation
was performed on a set of 39 (50 %) and 20 (25 %) elements
randomly selected 10000 times from the 78 test samples.
We calculated the percentage fluctuation of prediction for
comparing AI versus AI-corrected and AI versus gold stan-
dard as well, to confirm the role of sample selection data
over prediction or any reference.

Training process and technical features of four
prediction models with varying training levels

This study utilised the Ceph Assistant13 AI-architecture, a
Convolutional Neural Network (CNN) specifically developed
for landmark localization in lateral cephalometric images,
as a reference AI-based cephalometric solution. The TD
s on manual analysis (fully manual) and the time spent by the
on automatic evaluation followed by correction by a single



Figure 4 L2 distances between the coordinates of the manual average and AI-generated landmarks by varying amounts of
training data (TD).
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consisted of a total of 1600 lateral cephalograms, together
with their corresponding preliminary manual evaluations
stored in .xls/.xlsx format. The model underwent training
on four distinct datasets, containing 400/800/1200 and
1600 images, respectively. During each training process,
the model received cephalometric images as input and the
manually recorded location data of the 48 landmarks as
output.

Testing at four different levels of the model

During testing, the dataset was automatically analysed by
the AI-model following each training set (TD Z 400/800/
1200/1600 cephalometric images). Once the test set was
processed by the AI-algorithm, the senior examiner manu-
ally corrected landmark errors using mouse-controlled dot
tracing. Manual evaluation of the dataset was performed
using a test environment of the Ceph Assistant (Fig. 2),
configured directly for this experiment. The evaluation was
835
performed by two experts with 4 (medior) and 10 (senior)
years of clinical orthodontic experience. The 78 cephalo-
grams included images of 41 female and 37 male patients
with an average age of 13.8 years. Both manual and AI
evaluations included 48 cephalometric landmarks of skel-
etal, dental and profile markers (Table 1). Time was auto-
matically measured by the software.

Statistical analysis

A statistical analysis was performed on time efficiency and
accuracy of landmark detection achieved by the different
methods. After measurements were performed ten times
(2“manual”, 4“AI-corrected”, 4“AI”), data were compared
to the gold standard. The average of the landmark co-
ordinates, corrected by the senior expert on four different
occasions, was defined as the gold standard. It was found
that the quality of the test images substantially influenced
the decision of the experts on landmark positioning and



Figure 5 L2 distances between the coordinates of the manual average and AI-corrected landmarks by varying amounts of training
data (TD).

R. Bagdy-Bálint, G. Szabó, Ö.H. Zováthi et al.
time taken for evaluation. Therefore, experts graded im-
ages based on quality and statistical analysis was extended
to detect differences. This included precise calibration to
accurately compare different images. Table 2 shows that
almost a quarter of the images were rated as either easy
(score 4, 5) or difficult (score 1, 2) and 42 were rated as
moderate (score 3). We employed the violin plot chart to
show discrepancies in time measurements, as they can
reveal clustering and roughness of distribution, providing
additional information.15

Euclidean (L2) distances were considered for distance
errors, as L2 performed better than Manhattan (L1) in
research where directional information of the coordinates
yielded less difference and relevance.9,16 Histograms and a
box plot diagram were used to illustrate the comparison
between manual versus AI-corrected, manual versus AI-
generated and AI-generated versus AI-corrected distances
following each TD.
836
Results

Although the two references behaved in fundamentally
different ways, the percentage fluctuation values were
remarkably similar in both the semi-rotation (3.07 %;
3.095 %) and the quarter rotation statistics (5.15 % and
5.29 %). According to these cross-validation values, our test
dataset is representative, assuming that the cephalograms
cover all relevant clinical cases.
Time spent on evaluation

Comparative analysis was performed between the time
spent by the two experts on manual cephalometric analysis
and the time by the Ceph Assistant model for automatic
evaluation, followed by correction of the senior examiner.
Manual evaluations required an average of 315.48 s (sec)



Figure 6 L2 distances between the coordinates of the AI-generated and AI-corrected landmarks by varying amounts of training
data (TD).
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more than the model predictions (0.43 s) per sample. The
first four violin plots in Fig. 3 show that the mean time
(104.12e167.02 s) required to correct predictions improved
substantially as the AI-algorithm was upgraded with each
training set.
Distance errors of cephalometric landmark tracing
methods

We analysed 2D coordinate data (X,Y) of cephalometric
landmark predictions (hereafter “AI”) on digital X-ray images
after training on all four TDs. We examined the relevance of
these predictions to the average ofmanual corrections of the
senior examiner, defined as the gold standard.

Initially, AI was compared to the gold standard (Fig. 4).
Mean L2 distances varied between 2.43 and 2.88 mm
(median:1.94e2.44 mm) across the four different training
levels. Results indicate that the increasing number of
training samples (up to TD Z 1200) substantially improved
the accuracy of the model. Similar results were observed
when AI-assisted manual corrections (hereafter “AI-
837
corrected”) were treated as independent variables, with a
slightly reduced mean L2 distance of 1.75e2.10 mm
(median:1.31e1.71 mm) that remained consistent after
TD Z 800 (Fig. 5). The noticeable increase in standard
deviation after the second measurement was due to vari-
ations in decision-making related to the individual circum-
stances of the examiners in both cases.

In addition, we observed substantial agreement between
the AI and the AI-corrected landmarks (Fig. 6), with a mean
L2 distance ranging from 1.36 to 2.04 mm
(median:1.05e1.76 mm), depending on the training level of
the model. This highlights the influence of AI on decisions of
examiners during manual dot tracing. To eliminate errors
due to the subjective bias of a single examiner, a second
examiner performed an independent manual evaluation.

Comparisons were made between the measurements of
the senior and the medior examiners, as well as between
the landmarks observed by the senior examiner and the AI-
corrected after TD Z 1600. The mean L2 distance between
the two examiners, representing the inter-examiner error,
was 2.02 mm (median:1.66 mm) (Fig. 7), whereas the mean
intra-examiner variability was 2.10 mm (median:1.68 mm)



Figure 7 L2 distances between the coordinates of the landmarks detected manually by the two examiners.
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(Fig. 8). Furthermore, the results show that initial AI
prediction aids the decision making of the clinician, as
illustrated by the box plot diagram in Fig. 9. In this case,
L2 errors were also evaluated based on the training
level of the model and on the complexity of the images
(Table 2).

The L2 distance errors of the best models are detailed in
Tables 3 and 4. The primary difference between these ta-
bles is that in Table 3, model predictions were compared to
the gold standard, which is the average of four corrected
evaluations by the senior examiner. In contrast, Table 4
shows L2 landmark errors relative to the single correction
made after using the latest tool of the model. While the
model performs well in comparison to the average, the
senior examiner shows larger displacements to correct the
prediction than what would be necessary according to the
gold standard. On the one hand, this suggests that the
actual corrections are smaller than the average. On the
other hand, this can be a sign of bias in AI-assistance, as
the expert can be influenced by the predictions. However,
the placement of fully manual and AI-assisted landmarks is
practically acceptable.

When L2 errors were examined for the AI-corrected
landmarks after TD Z 1600, the highest distances were
measured by Condylon (4.03 mm), while the lowest was
838
measured by the center of Sella’s entry (1.1 mm) (Table 3).
Slightly modified, when the L2 errors were compared be-
tween the AI-corrected and the model predicted landmarks
after TD Z 1600, the highest errors were observed by
Basion (3.41 mm), while the lowest errors were found by
the center of Sella’s entry (0.22 mm) (Table 4).

Errors in clinically relevant diagnostic values

In orthodontics, diagnostically and therapeutically relevant
data (angles, proportions) typically involve at least three
landmarks. Therefore, L2 landmark errors of X and Y co-
ordinates provide limited insight into clinical relevance. We
performed calculations to assess how L2 discrepancies were
reflected in specific orthodontic reference angles or pro-
portions. The mean angular difference between the three
landmarks predicted by the model after TD Z 1600, and
those determined manually ranged from 0.17� to 1.09� on
average (Table 5). Similarly, angular difference was valued
from 0.05� to 1.86� when angles were determined by four
cephalometric landmarks (Table 6). Rational divergence was
observed in the proportion of lower and upper facial heights,
determined by three landmarks (N, SnA, Me) with the pre-
diction showing a difference of 3.14 % from the gold standard
ratio after TD Z 1600 were completed on the algorithm.



Figure 8 L2 distances between the coordinates of the landmarks detected manually by the senior examiner and the manual
average.

Figure 9 Box plot diagram of the mean L2 distances between the coordinates of the AI-generated and AI-corrected landmarks by
varying amounts of training data (TD) and by varying type of image quality.
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Table 3 L2 distances between the average of manually corrected model predictions and model predictions after TD Z 1600
detailed for each landmark.

Landmark Mean L2 distance (mm) Offset of centers 2D (mm) Offset of centers X (mm) Offset of centers Y (mm)

Cal 1 1.637076 0.232855 0.186644 �0.139232
Cal 2 1.949541 1.029317 0.701492 �0.753261

1 1LoMma 2.461322 0.592650 �0.343009 0.483300
2 1UpMma 2.464983 1.293880 �1.198248 �0.488188
3 A 2.025425 0.763167 0.401496 0.649018
4 Ar 2.060797 1.300355 �0.527451 1.188579
5 B 2.277940 0.861359 0.654628 0.559823
6 Ba 3.498204 2.640550 �1.940610 1.790680
7 Co 2.398892 0.162771 �0.143024 �0.077709
8 Cond 4.031917 3.818257 3.667022 1.063972

9 D 2.085304 0.680178 �0.614878 0.290805
10 Gl’ 2.611720 0.737790 0.138505 0.724672
11 Gn 1.975846 0.435858 �0.207106 0.383510
12 Gn’ 2.765901 0.995890 �0.990889 0.099674
13 Id 2.125472 0.570400 0.548000 0.158278
14 Im 3.423167 1.628828 �1.093928 1.206815
15 La 2.399474 1.149321 �0.476898 1.045709
16 Li 2.402736 0.277522 �0.201019 �0.191338
17 Ll 3.064468 1.378565 �0.598300 1.241966
18 Ls1u 2.251858 0.891643 0.102737 �0.885705
19 M6lo 2.493383 1.512762 �1.502171 0.178688
20 Me 2.658894 1.915190 �1.895412 �0.274531
21 Me’ 3.249505 2.061361 �2.061004 �0.038344
22 N 1.914186 0.518923 �0.513608 �0.074084
23 N’ 2.987097 2.182778 0.270411 �2.165964
24 Or 2.523092 1.193867 �0.569866 1.049081
25 PM 3.278403 1.349037 �0.327414 �1.308702
26 Pn 1.986226 0.270457 0.218972 0.158739
27 Po 2.353079 1.561155 1.072080 �1.134834
28 PoG 1.961738 0.168991 �0.133283 �0.103892
29 Pr 1.916989 0.574963 �0.241903 �0.521599
30 Pt 2.213844 0.713175 �0.602327 �0.381865
31 S 1.441243 0.757301 0.674090 �0.345119
32 Se 1.100986 0.246422 0.152383 0.193657

33 Sm 2.629311 0.842133 0.144136 0.829707
34 Sn 2.268836 0.401509 �0.016119 0.401185
35 SnA 2.260503 0.862765 �0.428025 �0.749105
36 SnP 3.781222 3.401066 �3.319714 �0.739422
37 Stm-i 2.344474 0.736194 0.383469 0.628437
38 Stm-s 2.427442 0.440965 0.342679 �0.277527
39 T1 2.117115 0.371426 0.362880 0.079218
40 T2 3.278450 2.705884 1.354193 2.342642
41 Tr 2.221228 0.636668 �0.449369 �0.451015
42 U6 2.282803 1.167137 �0.850259 �0.799543
43 U6d 3.252854 1.752945 �1.748208 �0.128778
44 Ua 2.062791 0.459479 �0.352060 0.295253
45 Ui 2.201745 0.434141 �0.431062 �0.051614
46 Ul 2.716757 0.864670 �0.263708 �0.823476
47 ppCond 2.767480 2.301227 0.445095 �2.257773
48 sPoG 2.494168 0.809869 �0.179820 �0.789654

Values in bold indicate the most outstanding results.
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Table 4 L2 distances between model predictions after TD Z 1600 and manually corrected model predictions after TD Z 1600
detailed for each landmark.

Landmark Mean L2 distance (mm) Offset of centers 2D (mm) Offset of centers X (mm) Offset of centers Y (mm)

Cal 1 0.643981 0.388422 0.384959 �0.051754
Cal 2 1.236142 1.150663 0.899862 �0.717129

1 1LoMma 2.088942 0.731733 0.065373 0.728807
2 1UpMma 1.780922 0.962528 �0.806648 �0.525146
3 A 0.976627 0.483491 0.299513 0.379546
4 Ar 2.129158 1.561206 �0.423932 1.502546
5 B 1.280191 0.848967 0.792764 0.303761
6 Ba 3.410516 2.855413 L1.792093 2.223013

7 Co 0.387927 0.192925 0.161667 �0.105281
8 Cond 2.922712 2.663729 2.656214 0.199946
9 D 0.462214 0.371593 �0.245463 0.278979
10 Gl’ 2.061247 1.395480 0.174731 1.384497
11 Gn 0.560286 0.366428 0.132685 0.341561
12 Gn’ 0.731179 0.342332 �0.332368 0.081989
13 Id 1.274109 0.771261 0.764531 0.101660
14 Im 2.939248 1.598290 �0.378901 1.552728
15 La 1.135205 0.917862 �0.213480 0.892691
16 Li 1.555915 0.068109 �0.019415 �0.065283
17 Ll 2.131087 1.321900 �0.435440 1.248124
18 Ls1u 0.840191 0.609058 0.200682 �0.575047
19 M6lo 1.660013 0.942936 �0.890973 0.308700
20 Me 1.422967 1.346214 �1.346151 0.013062
21 Me’ 1.287331 1.087110 �1.081382 0.111444
22 N 0.959346 0.356402 �0.308718 �0.178088
23 N’ 0.780227 0.679803 �0.108791 �0.671042
24 Or 1.458742 0.975813 �0.348082 0.911619
25 PM 1.051151 0.876947 0.565909 �0.669912
26 Pn 0.413855 0.238079 0.234168 �0.042974
27 Po 1.871023 1.625108 0.684366 �1.473980
28 PoG 0.310770 0.095398 0.086747 �0.039696
29 Pr 0.853830 0.389805 �0.016424 �0.389459
30 Pt 1.779997 0.548484 �0.542283 0.082244
31 S 0.843171 0.659604 0.647199 �0.127323
32 Se 0.224547 0.026718 L0.007611 0.025611

33 Sm 1.767907 0.954243 0.228237 0.926546
34 Sn 0.876506 0.445288 0.313968 0.315762
35 SnA 1.712885 0.765973 �0.270384 �0.716664
36 SnP 2.817688 2.599645 �2.529856 �0.598315
37 Stm-i 0.596301 0.336120 0.037379 0.334035
38 Stm-s 0.544540 0.130432 0.084280 �0.099546
39 T1 1.369595 0.212281 0.211934 0.012134
40 T2 2.321326 1.976671 0.464824 1.921241
41 Tr 0.377330 0.073026 0.040836 0.060541
42 U6 1.407054 0.915504 �0.784272 �0.472297
43 U6d 1.645479 0.923445 �0.759399 0.525418
44 Ua 1.140231 0.643875 �0.631138 �0.127439
45 Ui 1.133775 0.076869 0.018179 0.074689
46 Ul 1.276720 0.878373 0.027640 �0.877938
47 ppCond 2.602839 2.383307 0.052730 �2.382724
48 sPoG 0.969945 0.469860 0.033531 �0.468662

Values in bold indicate the most outstanding results.
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Table 5 Angular differences between model prediction after TD Z 1600 and manual average (angles determined by three
cephalometric landmarks).

Reference Method Mean reference
angle (deg)

Mean predicted
angle (deg)

Mean angular
difference (deg)

SNA angle Manual average and AI 1600 �82.087991 �80.997427 1.090385

SNB angle Manual average and AI 1600 �77.652970 �76.731267 0.922000

ANB angle Manual average and AI 1600 4.435581 4.267428 L0.168466

SNPog angle Manual average and AI 1600 �78.659431 �78.349143 0.310633

Table 6 Angular differences between model prediction after TD Z 1600 and manual average (angles determined by four
cephalometric landmarks).

Reference Method Mean reference
angle (deg)

Mean predicted
angle (deg)

Mean angular
difference (deg)

Facial angle Manual average and AI 1600 90.729613 92.592710 1.861190
Gonion angle Manual average and AI 1600 120.646687 119.763093 �0.886658
Interincisal angle Manual average and AI 1600 128.086133 126.961123 �1.117114
IMPA angle Manual average and AI 1600 98.796140 98.769588 �0.053833

R. Bagdy-Bálint, G. Szabó, Ö.H. Zováthi et al.
Discussion

We maintained high-quality training and evaluation data by
following standardized protocols and consistent measure-
ment procedures while including samples with diverse
medical and imaging characteristics to ensure comprehen-
sive domain coverage. Additionally, we conducted thorough
statistical analyses using medically relevant metrics and
perspectives to support the development of a reliable AI
model.

In terms of time efficiency, modern prediction tools are
advantageous for cephalometric evaluation. Even with
corrections of landmarks predicted by models trained on
smaller datasets, the evaluation took less than half the
time of fully manual dot tracing. In terms of accuracy, the
mean L2 distance error of AI after TD Z 1600 was 66 % of
the difference between the manual tracing of the two ex-
perts using the same metric, showing that the latest model
provided more consistent dot tracing than two different
examiners or the same examiner on two different occa-
sions. These results confirm the hypothesis that examiners
make minor corrections to AI, indicating that predictions
influence the decisions of the examiner during cephalo-
metric analysis; however, these potentially biased place-
ments are still medically correct, and were even closer to
the gold standard, indicating that model assistance may not
only speed up but also improve manual prediction. The
extension of TD improved model precision, but these small
improvements are clinically insignificant, as the tool noise
is lower than examiner noise. Still, the use of higher quality
models is beneficial as they yield considerably better re-
sults with less correction. Previous studies suggest lower
intra- and inter-examiner variability compared to our
findings, which may be due to variations in exclusion
842
criteria and the increased number of landmarks incorpo-
rated in our study.17,18

According to Wang et al.,19e21 landmark detection
within 2 mms is clinically acceptable. Although our model
slightly exceeded this criterion on average, the median
prediction distance is well inside this threshold, probably
due to the fact that our evaluation scheme included much
more difficult landmarks than many other studies.
Furthermore, our calculations of clinically relevant angular
and ratio errors between AI and human dot tracing showed
promising results.

Considering these references, we can claim that our best
prediction model can serve as an accurate baseline for or-
thodontic analysis on lateral cephalograms, substantially
speeding up theworkflowof orthodontic diagnostics.22 Given
the large amount and high quality of data available through
this method, a fully autonomous system could be developed
that requires no corrections. Further research could inves-
tigate the consequences of evaluation errors and biases in
clinical therapy. Future research should focus on training AI
with malocclusion-specific datasets and integrating diverse
evaluationmethods to create a robust, precise, and efficient
AI-driven diagnostic system for clinical practice.
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