

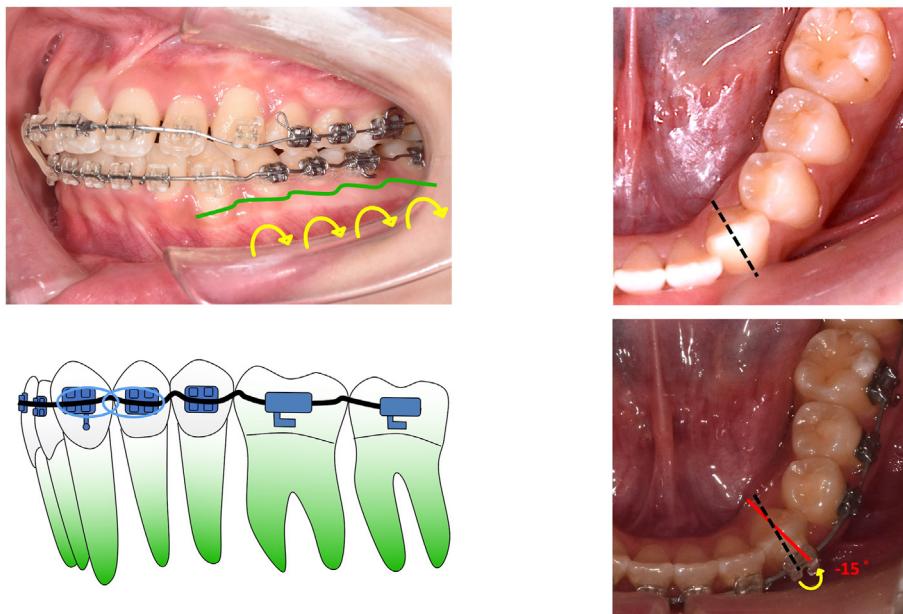


## Correspondence

# Clinical application of multibend edgewise archwire for canine de-rotation and space management



### KEYWORDS


MEAW;  
Orthodontic treatment;  
Canine de-rotation;  
Non-surgical alignment;  
Malocclusion

The multibend edgewise archwire (MEAW) technique is widely utilized for complex orthodontic cases because of its simplified wire bending compared with the traditional multiloop edgewise archwire technique. This updated technique allows for efficient rotational adjustments and spatial management, providing a substantial advantage in cases requiring precise control over tooth positioning. In the present case, the MEAW technique was employed to create a distal space around the left mandibular canine, enabling a 15° de-rotation to achieve optimal alignment (Fig. 1).<sup>1</sup>

The mechanics of the MEAW technique enable a precise control over the occlusal forces, which facilitates the movements such as tipping, retraction, and leveling with a minimal reliance on the auxiliary appliances. This technique has demonstrated a success in treating malocclusions that require substantial rotation or alignment adjustments.<sup>2</sup> Studies have demonstrated the efficacy of the MEAW technique in achieving canine rotation and distal movement and in producing reliable results in other complex cases, such as anterior open-bite treatment.<sup>3</sup> The MEAW technique can also manage intricate spatial and

rotational needs, rendering it versatile across various orthodontic scenarios; this thus supports its potential as a nonsurgical solution.<sup>4</sup> In the present case, the application of the MEAW technique allowed for targeted adjustments, which considerably improved the alignment of the left mandibular canine and maintained the stability of surrounding structures. The streamlined multibend design of the MEAW provided a less invasive approach to space management, thereby reducing anchorage demands and preserving the dental arch. Additionally, the application of this technique used to distalize multiple teeth is consistent with findings that nonsurgical methods can achieve efficient space creation and improved occlusal stability, even in challenging rotational cases.<sup>5</sup>

After a structured treatment period, the patient's left mandibular canine achieved the desired alignment, with marked improvements in both occlusal function and aesthetics. The case exemplifies the MEAW technique's utility in achieving precise, targeted outcomes, demonstrating its ability to balance simplicity and precision in contemporary orthodontics.



**Figure 1** (A) Pre-treatment intraoral photograph. (B) MEAW technique achieved a 15-degree de-rotation of the left mandibular canine. (C) Diagram showing the use of the MEAW technique for de-rotating the left mandibular canine. (D) Post-treatment intraoral photograph.

### Declaration of competing interest

The authors have no conflicts of interest to declare regarding this correspondence.

### References

1. Tabancis M, Ratzmann A, Doberschütz P, Krey KF. Multiloop edgewise archwire technique and denture frame analysis: a systematic review. *Head Face Med* 2020;16:1–9.
2. Hsu JY, Cheng JHC, Feng SW, Lai PC, Yoshida N, Chiang PC. Strategic treatment planning for anterior open bite: a comprehensive approach. *J Dent Sci* 2024;19:1328–37.
3. Huang CS, Yu JH. ISW for the treatment of functional Class III malocclusion by crossbite arch and MEAW technique in an adult. *Int J Dent Oral Health* 2018;4:1–6.
4. Liu H, Hao J, Shen Y. Partial regression of a healed periapical lesion in an endodontically treated premolar during orthodontic extrusion: a case report. *J Dent Sci* 2024;19:1894–6.
5. Huang CY, Chen YH, Lin CC, Yu JH. Improved super-elastic Ti-Ni alloy wire for treating adult skeletal Class III with facial asymmetry: a case report. *World J Clin Cases* 2023;11:5147–59.

Yu-Hsiang Chang  
Yuan-Hou Chen  
\*Jian-Hong Yu

Division of Orthodontics, Department of Dentistry, China Medical University Hospital, Taichung, Taiwan

\*Corresponding author. Division of Orthodontics, Department of Dentistry, China Medical University Hospital, 2. Yu-Der Rd, Taichung 40402, Taiwan.  
E-mail address: [kenkoyu@mail.cmu.edu.tw](mailto:kenkoyu@mail.cmu.edu.tw) (J.-H. Yu)

Received 23 November 2024  
Final revision received 12 December 2024  
Available online 9 January 2025