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Abstract Background/purpose: Diabetic periodontitis (DP) is a severe oral disease character-
ized by hyperinflammation and impaired wound healing, with inflammaging and pyroptosis
playing key roles in its pathogenesis. Corylin, an isoflavone compound, has shown promising
anti-inflammatory and anti-pyroptotic properties, but its specific effects on DP remain largely
unexplored. This study aimed to evaluate the effects of Corylin on inflammaging and pyroptosis
in an in vitro model of DP, potentially offering novel insights into therapeutic strategies for this
challenging condition.
Materials and methods: This in vitro study evaluated the effects of Corylin on inflammaging
and pyroptosis in human gingival fibroblasts (HGFs) exposed to advanced glycation end prod-
ucts (AGEs) to mimic the diabetic environment. We then examined the reactive oxygen species
(ROS) generation and wound healing ability in the cells. To assess the inflammaging, we probed
into cell senescence activity and senescence marker p16 as well as its senescence associated
secretory phenotype (SASP) such as interleukins (IL)-6 and IL-8. Next, we measured the levels
of pyroptosis markers including nucleotide-binding domain, leucine-richecontaining family,
pyrin domainecontaining-3 (NLRP3), apoptosis-associated speck-like protein containing a
CARD (ASC), caspase-1 in cells with and without Corylin.
Results: Corylin reduced ROS production and enhanced wound healing in AGEs-treated HGFs in
a dose-dependent manner. Furthermore, Corylin attenuated the heightened inflammaging
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markers, which included cellular senescence and the secretion of SASP, IL-6 and IL-8. Addition-
ally, Corylin downregulated the expression of pyroptosis-related components, including NLRP3,
ASC, and caspase-1, in AGEs-treated HGFs.
Conclusion: These findings suggest that Corylin may have therapeutic potential in DP by miti-
gating AGE-induced inflammaging and pyroptosis. Corylin’s ability to promote wound healing
and inhibit both cellular senescence and pyroptosis highlights its potential as a novel therapeu-
tic agent for DP.
ª 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Diabetes mellitus (DM) represents a significant global health
challenge, characterized by chronic metabolic dysfunction
and persistent hyperglycemia. Recent epidemiological data
indicate that DM affects approximately 10.5 % of the global
population aged 20e79 years, with projections suggesting
an increase to 12.2 % by 2045.1 The hyperglycemic state
inherent to DM induces a cascade of pathophysiological
changes, notably elevated systemic inflammation and
oxidative stress, which subsequently manifest in various
tissue and organ complications.2 Among these complica-
tions, diabetic periodontitis (DP) has emerged as a partic-
ularly significant concern, presenting as a chronic
inflammatory condition that progressively destroys tooth-
supporting tissues through connective tissue degradation
and alveolar bone resorption.3

The pathogenic mechanisms underlying DP have been
increasingly elucidated, with advanced glycation end-
products (AGEs) emerging as central mediators in disease
progression.4,5 These accumulated AGEs subsequently
contribute to the development of inflammaging, a state of
chronic low-grade inflammation that substantially increases
periodontal tissue susceptibility to pathogenic assault.6 The
major contributors to inflammaging have been found to be
the promotion of cellular senescence and its senescence-
associated secretory phenotype (SASP). Cell senescence is
termed as an irreversible arrest of the cell cycle which can
significantly impacts tissue homeostasis. These senescent
cells can release a variety of pro-inflammatory cytokines,
such as IL-6 and IL-8. This process, known as the senescence-
associated secretory phenotype (SASP), further contributes
to the perpetuation of the inflammatory environment.7,8 In
the context of DP, periodontal cells exhibit enhanced
cellular senescence and SASP secretion, establishing a self-
sustaining cycle of inflammation that accelerates disease
progression.9,10

Apart from inflammaging, recent research has also linked
DP to pyroptosis, a highly inflammatory form of cell
death.11,12 This process is characterized by cell swelling,
membrane pore formation, and the release of pro-
inflammatory cytokines, playing a significant role in the
hyperinflammatory response observed in DP.13e16 Pyroptosis
is triggered by pathogen-associated molecular patterns
(PAMPs) or damage-associated molecular patterns (DAMPs),
involving the formation of the NLRP3 inflammasome com-
plex. This complex, comprising NLRP3, pro-caspase-1, and
apoptosis-associated speck-like protein containing a
1616
caspase-recruitment domain (ASC), activates caspase-1.
Activated caspase-1 then cleaves GSDMD and pro-IL-1b/
18.15 The N-terminal domain of cleaved GSDMD then forms
pores in the cell membrane, facilitating the release of
mature IL-1b and IL-18 and inducing an inflammatory
response.15,17 This process, observed in various oral cells
including gingival fibroblasts and periodontal ligament
fibroblasts.18e24 In addition. elevated levels of NLRP3
inflammasome components have been found in periodontal
cells exposed to high glucose or AGEs, conditions charac-
teristic of diabetes.25e27 Clinically, DP patients exhibit
increased NLRP3 and ASC protein expression in their peri-
odontal tissues, correlating with more severe inflamma-
tion.28 The current body of evidence strongly suggests that
inflammaging and pyroptosis play a regulatory role in
diabetes-associated periodontitis.

In the search for therapeutic interventions targeting
these pathological processes, Corylin, an isoflavone com-
pound isolated from Psoralea corylifolia L., has emerged as
a promising candidate. This naturally occurring compound
exhibits a remarkable array of biological activities, as
antioxidant,29,30 anti-inflammatory,31e33 antidiabetic,34

anti-obesity35 and antimicrobial.36 Of particular relevance
to DP, recent studies have demonstrated Corylin’s capacity
to ameliorate cellular senescence37 as well as NLRP3
inflammasome activation and reduce pyroptosis-associated
markers.31,38 Additionally, Corylin has shown promising ef-
fects in promoting wound healing and modulating osteo-
clast differentiation,39,40 though its specific effects on DP
and its underlying mechanism remain to be elucidated.

Given the intricate interplay between inflammaging and
pyroptosis in DP pathogenesis, coupled with Corylin’s
demonstrated therapeutic properties, investigation of this
compound’s potential in treating DP represents a compelling
research direction. This study aimed to evaluate the effects
of Corylin on inflammaging and pyroptosis in an in vitro
model of DP, potentially offering novel insights into thera-
peutic strategies for this challenging condition. Under-
standing these mechanisms may provide a foundation for the
development of more effective treatments for patients
suffering from this debilitating complication of diabetes.

Materials and methods

Cell culture

The study was approved by the Institutional Review Board
at Chung Shan Medical University Hospital (CSMUH No: CS1-
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22047). Primary human gingival fibroblasts (HGFs) were
isolated from two healthy individuals undergoing crown
lengthening procedures, utilizing a previously reported
approach.41 HGFs between the third and eighth passages
were used in this study. Advanced glycation end-products
(AGEs)-BSA were obtained from (BioVision, Milpitas, CA,
USA), and Corylin was purchased from (Sigma Chemical Co,
St. Louis, MO, USA). To investigate the impact of Corylin,
HGFs were exposed to AGEs-BSA in the presence of Corylin
at various concentrations for 24 h.

Cell viability assay

To mimic the diabetic milieu in vitro, HGFs were cultured
with AGEs. 10,000 cells/well were seeded onto 96-well
plates and incubated for 24 h. Following pre-treatment
with AGEs (500 mg/ml) for 24 h, Corylin was added at serial
doses (10 and 20 mM) for a further 24 h. Cell viability was
assessed using the MTT assay, and absorbance was
measured at 570 nm. The proliferation rate of HGFs was
calculated relative to the untreated control (0 mM Corylin).

Flow cytometry

Flow cytometry was employed to analyze ROS production
by measuring the fluorescence intensity of 20,70-dichloro-
fluorescein (DCF) in treated and non-treated HGFs stimu-
lated with AGEs. The fluorescence of DCF and ethidium
(ETH) was generated from the oxidation of 20,70-dichlor-
odihydrofluorescein diacetate (DCFH-DA; SigmaeAldrich)
and dihydroethidium (DHE; Molecular Probes, Eugene, OR,
USA), which are sensitive to H2O2/NO-based radicals and
superoxide (O2

- ), respectively. Cells were incubated for
60 min at 37 �C with 10 mM DCFH-DA or DHE, then washed
twice with PBS. Flow cytometry (BectoneDickinson, San
Jose, CA, USA) was used to detect ETH and DCF fluores-
cence in 10,000 cells, with excitation and emission wave-
lengths of 488 nm and 525 nm, respectively.

Wound healing assay

Cells were seeded into 12-well plates and grown to
approximately 80 % confluence. A sterile 200 mL pipette tip
was used to create a scratch wound in the cell monolayer.
Cell migration into the wound area was monitored and
photographed at 0 and 24 h under a microscope.

Western blot

The Western blot analysis was utilized following the previ-
ously described protocol.42 Primary antibodies against
senescence marker p16 were used. Bound antibodies were
detected using enhanced chemiluminescence (ECL), and
images were captured using an ImageQuant LAS 4000 Mini.

Enzyme-linked immunosorbent assay (ELISA)
analysis

IL-6 and IL-8 concentrations in cell culture supernatants
were determined using ELISA kits, following the
1617
manufacturer’s instructions. Absorbance was measured at
450 nm using a microplate reader. Each HGF sample was
analyzed in triplicate.

Senescence-associated beta-galactosidase (SA-b-
gal) activity

Cellular senescence was measured by assessing SA-b-Gal
activity using a Cellular Senescence Assay kit (BioVision), as
described previously.43 SA-b-Gal positive cells were visual-
ized and counted under a microscope.

Quantitative RT-PCR (qRT-PCR)
Total RNA was extracted using Trizol reagent, and reverse
transcription was performed using Superscript III first-
strand synthesis technology. qRT-PCR was conducted using
ABI StepOneTM Real-Time PCR Systems (Applies Biosystems,
Waltham, MA, USA), with GAPDH serving as an internal
control. Primer sequences (50-30) for pyroptosis markers
were as follows using the gene database from National
Center for Biotechnology Information (NCBI): Forward-
CTGGGTCAGTTGTGGTGGAT and Reverse- ATGATCGCAT-
GAGGGCTTGT for NLRP3; Forward- TCCGGTA-
GAGCAGCTTTGTT and Reverse- AGCTGGTCAGCTTCTACCTG
for ASC; and Forward- CCAGCCCCTTCCAAAACTCT and
Reverse- GTACAGGCCCTGCCAAAAAG for CASP1.44

Statistical analysis

Each experiment was replicated three times. One-way
analysis of variance (ANOVA) was used for statistical anal-
ysis, and Duncan’s test was used to examine differences
between treatment groups. A P-value less than 0.05 was
considered statistically significant.

Results

First, we assessed the potential cytotoxicity of Corylin on
human gingival fibroblasts (HGFs). Our results revealed that
Corylin, up to a concentration of 40 mM, had no significant
effect on the cell proliferation rate (Fig. 1). To investigate
Corylin’s therapeutic potential, we exposed HGFs to
advanced glycation end products (AGEs) to mimic the dia-
betic periodontal environment. As expected, AGE stimula-
tion increased ROS production in HGFs. However, Corylin
treatment effectively repressed ROS generation in a dose-
dependent manner (Fig. 2). Given the critical role of fi-
broblasts in wound healing, we conducted a wound healing
scratch assay to assess their migratory capacity. We found
that the presence of AGEs impaired the wound healing
ability of HGFs. Conversely, Corylin treatment reversed this
impairment in a dose-dependent manner (Fig. 3).

To explore the mechanisms underlying Corylin’s benefi-
cial effects on wound healing, we investigated its impact on
inflammaging and pyroptosis. AGEs markedly enhanced
senescence activity in HGFs, as evidenced by increased SA-
b-Gal staining and p16 expression. However, Corylin treat-
ment effectively counteracted this AGE-induced senes-
cence (Fig. 4). Furthermore, Corylin suppressed the AGE-
elicited secretion of pro-inflammatory cytokines IL-6
(Fig. 5A) and IL-8 (Fig. 5B) in a dose-dependent manner,



Figure 1 Effects of Corylin on the cell proliferation rate in

AGEs-treated HGFs Corylin concentrations up till 40 mM did not
significantly affect the cell proliferation rate in HGFs induced
with AGEs. Data represent the mean � SD.
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indicating its anti-inflammaging potential. Finally, we
examined the effect of Corylin on pyroptosis-related mRNA,
including NLRP3, ASC, and caspase-1, in AGE-treated HGFs.
Corylin effectively restored the expression of these pyrop-
tosis markers, which were upregulated in AGE-stimulated
cells (Fig. 6).

Discussion

The accumulation of advanced glycation end products
(AGEs) in hyperglycemia has been linked to an increased
risk of diabetic periodontitis (DP). Recent research has
implicated inflammaging and pyroptosis in the pathogenesis
of DP. However, conventional DP treatments, such as me-
chanical debridement and antibiotics, primarily target the
Figure 2 Effects of Corylin on the production of ROS in the AG

evaluated using DCFH-DA. AGEs-treated HGFs exhibited significantl
dependent fashion. Data represent the mean � SD. *P < 0.05 indica
#P < 0.05 indicates a significant difference compared to the AGEs
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bacterial source and do not address the hyperinflammatory
host immune response. Therefore, understanding the un-
derlying mechanisms of DP and exploring alternative
adjunct therapies that target the host immune response
represents a promising avenue for improving treatment
outcomes.

Our study found that AGEs increased oxidative stress in
human gingival fibroblasts (HGFs), accelerated cell senes-
cence, and promoted the secretion of cytokines IL-6 and IL-
8, consistent with previous findings.45,46 AGEs are well-
known for their role in stimulating cellular senescence,
which can lead to tissue malfunction and impaired regen-
erative capacity.7 The mechanism underlying AGEs-induced
senescence involves the induction of p21, a potent cyclin-
dependent kinase inhibitor. Upon binding to their receptor
(RAGE), AGEs sustain endoplasmic reticulum stress, leading
to p21 activation and subsequent cell cycle inhibition, ulti-
mately promoting premature aging or senescence.47,48 This
cellular senescence, coupled with a hyper-inflammatory
state, contributes significantly to the perpetuation of
inflammaging and the progression of DP.10 Studies have
shown increased expression of periodontal IL-649 and sys-
temic IL-850 in patients with DP compared to those with
periodontitis alone, further highlighting the role of AGEs in
promoting inflammaging in the context of DP. However,
administration of Corylin successfully suppressed the
inflammaging induced by AGEs in HGFs in a dose-dependent
manner. In agreement with an in vitro study on human um-
bilical vein endothelial cells, RNA sequencing data showed
that Corylin ameliorates cellular senescence.37

In our study, AGEs significantly increased the expression
of pyroptosis markers mRNA, including NLRP3, ASC, and
pro-caspase 1. This aligns with previous findings where
elevated levels of key pyroptosis cytokines were detected
in the gingival crevicular fluid and tissues of DP pa-
tients.28,51 These pyroptotic cytokines, particularly IL-1b
and IL-18, stimulate matrix metalloproteinases (MMPs),
leading to the degradation of connective tissue in the
periodontium and contributing to tissue destruction in DP.52

The severity of periodontal tissue destruction has been
correlated with increased levels of NLRP3, caspase-1, and
IL-18 in the gingival crevicular fluid of DP patients.53

Importantly, the addition of Corylin dramatically
reversed the upregulation of these pyroptosis markers,
Es-treated HGFs The effect of Corylin on ROS production was
y elevated ROS level, which was mitigated by Corylin in a dose-
tes a significant difference compared to the control group, and
-treated group.



Figure 3 Effects of Corylin on wound healing in the AGEs-stimulated HGFs Wound healing, which was markedly impaired in
AGEs-stimulated HGFs, was restored by Corylin treatment in a dose-dependent manner.

Figure 4 Effects of Corylin on the cell senescence activity

in the AGEs-treated HGFs Indicators of cellular senescence,
including SA-b-Gal staining (upper panel) and p16 expression
(lower panel), were elevated in AGEs-treated HGFs. Corylin
treatment reversed these senescence markers.

Figure 5 Effects of Corylin on the production of pro-inflammat

(A) and IL-8 (B) was evaluated in AGEs-treated HGFs after trea
mean � SD. *P < 0.05 indicates a significant difference compare
difference compared to the AGEs-treated group.
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indicating its anti-pyroptotic activity. Corylin has demon-
strated potent anti-pyroptotic effects in several studies.
Huang et al. showed that Corylin inhibits NLRP3 inflamma-
some activation and reduces IL-1b production in microglia,
indicating its ability to suppress pyroptosis and inflamma-
tion.31 Similarly, Corylin effectively reduced pyroptosis-
associated caspase-3 and IL-1b levels in a mouse model of
liver fibrosis, further highlighting its anti-pyroptotic prop-
erties.38 Given its ability to modulate both inflammaging
and pyroptosis, further investigation into whether Corylin
influences cellular migration, extracellular matrix produc-
tion, or angiogenesis could provide deeper insights into its
potential role in promoting wound healing in DP.

Taken together, this study demonstrates that Corylin
may have therapeutic potential in diabetic periodontitis
models by acting against AGE-induced inflammaging and
pyroptosis. We have shown that Corylin promotes wound
healing in human gingival fibroblasts by inhibiting cellular
senescence and its associated secretory phenotype (SASP),
including IL-6 and IL-8, as well as pyroptosis. Given its anti-
inflammaging and anti-pyroptosis properties, Corylin could
ory cytokines in HGFs treated with AGEs The secretion of IL-6
tment with 10 and 20 mM Corylin. Results are expressed as
d to the control group, and #P < 0.05 indicates a significant



Figure 6 Impact of Corylin on pyroptosis-related marker genes in HGF treated with AGEs qRT-PCR analysis was used to
determine the effect of Corylin on the expression of pyroptosis-related marker genes, including NLRP3 (A), ASC (B), and caspase-1
(C), in AGEs-treated HGFs. Data are shown as mean � SD, with *P < 0.05 representing a significant difference compared to the
control group and #P < 0.05 representing a significant difference compared to the AGEs-treated group.
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complement existing therapies like scaling and root planing
or systemic antibiotics, offering a more comprehensive
approach to managing periodontitis in diabetic patients.
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