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Abstract Background/purpose: Effective dental pulp healing is essential for preserving tooth
vitality. Although beta-glucan has shown promise in wound healing in the medical fields, its po-
tential effects on human dental pulp cells (HDPCs) remain unexplored. This study aimed to
assess beta-glucan’s effects on HDPC proliferation, migration, collagen synthesis, mineraliza-
tion, and differentiation.

Materials and methods: Primary HDPCs were cultured and assigned into five groups: control,
vehicle, and beta-glucan at concentrations of 5, 7.5, and 10 mg/mL. Cell proliferation was
quantified using the alamarBlue® assay at 24, 48, and 72 h. Cell migration was assessed at
12 and 24 h via the scratch wound healing assay. Flow cytometry was employed to detect in-
tegrin beta 1 (CD29) expression during wound healing. Mineralization and differentiation at day
14 were evaluated through alizarin red S staining and quantitative real-time polymerase chain
reaction (qRT-PCR), measuring Dentin Sialophosphoprotein (DSPP), Interleukin-10 (IL-10), and
Collagen type | (COL1) gene expression. Statistical significance was established at P < 0.05.
Results: At 24 and 72 h, all concentrations of beta-glucan significantly induced cell prolifera-
tion. In the wound healing assay, beta-glucan improved cell migration and increased the
expression of integrin beta 1 after 24 h. Mineralized matrix formation and the expression of
IL-10 and COL1 were significantly observed at 14 days. The upregulation of DSPP was detected
in groups supplemented with 5 and 7.5 mg/mL beta-glucan.

Conclusion: Beta-glucan enhanced cell proliferation, cell migration potential, integrin beta 1
expression, mineralized matrix formation, and DSPP, IL-10, and COL1 gene expression in HDPCs.
© 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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Introduction

Vital pulp therapy (VPT) aims to maintain the vitality of
teeth affected by deep caries, trauma, or iatrogenic er-
rors.” Preserving pulp vitality is beneficial as it provides a
defense against external harms and supports the self-
protective and reparative processes when injured.?* Mod-
ern VPT involves removing infected pulp tissue and applying
a bioactive capping material to the exposed pulp.*® The
potential for pulpal wound healing is crucial post-VPT due
to the uncertain condition of the pulp after infected tissue
removal. Dental pulp stem cells at the injury site are
believed to contribute to the initial repair process.”®
However, information on the reparative potential of pulp
tissue healing, particularly wound closure after VPT, is
limited. Therefore, supplements, techniques, and in-
novations that promote initial wound healing could signifi-
cantly benefit VPT.

Beta-glucans, natural polysaccharides found in plants,
bacteria, fungi, and algae, have gained attention for their
therapeutic potential in wound healing.’ These compounds
exhibit remarkable biological properties, including the
ability to enhance critical cellular processes such as cell
proliferation, migration, reepithelization, angiogenesis,
and collagen synthesis.”®" 2 As a result, beta-glucans are
emerging as promising candidates for the development of
natural wound-healing agents in the medical field. Clinical
studies have shown that beta-glucan applications can
accelerate wound closure and reduce treatment costs,
particularly for chronic wounds.'>' Additionally, beta-
glucans show promise in bone regeneration due to their
ability to promote bone growth, inhibit osteoclastogenesis,
enhance mesenchymal stem cell adhesion, and support
osteoblast differentiation, thereby facilitating bone for-
mation.'> While research on beta-glucans in dentistry is still
limited, one study demonstrated that beta-glucans could
reduce inflammation and alleviate alveolar bone loss in
diabetic animals with periodontitis.'® These findings sug-
gest that beta-glucan-containing wound dressings may
represent promising therapeutic potential for improving
wound healing in both medical and dental applications.

This study aimed to evaluate the effects of beta-glucan
on pulpal wound healing by examining cell proliferation,
cell migration, collagen synthesis, and mineralization in
isolated human dental pulp cells.

Materials and methods
Isolation and culture of HDPCs

Human dental pulp cells (HDPCs) were obtained from
healthy, non-carious third molars with no pulp disease,
extracted for orthodontic purposes from patients aged
19—21 years (n = 3) following approval from the Human
Experimental Committee, Faculty of Dentistry, Chiang Mai
University, Thailand (No.7/2022). Prior to tooth extraction,
patients performed an oral rinse with chlorhexidine
mouthwash to minimize the microbial load in the oral
cavity. Following extraction, the teeth were immediately
rinsed with sterile saline. Strict aseptic protocols were
adhered to throughout the tissue isolation process,

including the preparation of guide grooves on the buccal
aspects of the crowns of the extracted teeth using diamond
burs (FG D8; Intensiv, Zurich, Switzerland). These grooves
facilitated division of the teeth into two pieces using a
chisel and mallet. The pulp tissue was then carefully
collected using sterile instruments. Pulp tissues were
digested with Collagenase | (Gibco, Gaithersburg, MD, USA)
and Dispase Il (Sigma—Aldrich, St Louis, MO, USA) for 45 min
at 37 °C. Cells were cultured in complete alpha-minimum
essential medium (Sigma—Aldrich) with 10 % fetal bovine
serum (Sigma—Aldrich), 1 % penicillin-streptomycin (Sig-
ma—Aldrich), and 100 mol/L vr-ascorbic acid (Sigma-
—Aldrich) at 37 °C and 5 % CO2. Cells from the second to
fourth passages were used. All experiments were per-
formed in triplicate.

Beta-glucan preparation

Beta-glucan from Euglena gracillis (Sigma—Aldrich) was
used. A stock solution was prepared and stored at 4 °C using
0.1 % dimethyl sulfoxide (DMSO) (Sigma—Aldrich) as the
vehicle. The stock solution was diluted with culture or
differentiation medium, as required, and filter sterilized
with 0.2-um microfilters (Corning, Oneonta, NY, USA).

Cell proliferation assay

HDPCs were seeded into 96-well plates at 5000 cells/well.
After attachment, media was replaced with beta-glucan at
1, 2.5, 5, 7.5, and 10 mg/mL, with regular complete media
as the negative control. A vehicle group examined DMSO’s
effect. To evaluate proliferation, 15 pL of alamarBlue®
(Bio-Rad Laboratories, Hercules, CA, USA) were added to
each well. Fluorescence was monitored at 24, 48, and 72 h
using a plate reader (Tecan Trading AG, Mannedorf,
Switzerland) at 530 nm excitation and 590 nm emission.
Percentage differences between control and treated groups
were calculated. The three concentrations with the most
pronounced proliferative effect were used in subsequent
experiments.

After selecting the appropriate concentration of beta-
glucan from the previous part, the following investigations
were set into 5 experiment groups:

1. Control: HDPCs cultured in regular complete media

2. Vehicle: HDPCs cultured in regular complete media
containing 0.1 % DMSO

3. BG 5: HDPCs cultured in regular complete media con-
taining 5 mg/mL beta-glucan

4. BG 7.5: HDPCs cultured in regular complete media con-
taining 7.5 mg/mL beta-glucan

5. BG 10: HDPCs cultured in regular complete media con-
taining 10 mg/mL beta-glucan

Wound healing assay

HDPCs were seeded in a 24-well plate at 30,000 cells/well.
At 80 % confluence, a scratch was made using a sterile
100 pL pipette tip. Culture media with or without beta-
glucan was added. The plates were incubated for 12 and
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24 h under an automated live-cell imaging microscope
(DMi8 microscope) (Leica Microsystems, Buffalo Grove, IL,
USA) for live monitoring. Cell migration was assessed, and
quantitative analysis was performed using Image J
software.

Investigation of integrin beta 1 expression using
flow cytometry

To examine the role of integrin in cell migration, HDPCs
were cultured in a 6-well plate at 300,000 cells/well. At
80 % confluence, scratches were made, and cells were
treated with beta-glucan or complete media for 24 h. Cells
were harvested, centrifuged, resuspended in FACs buffer,
and incubated with FITC-conjugated integrin beta 1
antibody (Invitrogen, Carlsbad, CA, USA) for 30 min at
4 °C. Flow cytometry analysis was conducted using a
CytoFLEX S flow cytometer (Beckman Coulter, Brea, CA,
USA). Data were analyzed based on mean fluorescence
intensity (MFI).

Evaluation of mineralization production using
alizarin red S staining

HDPCs were seeded in a 24-well plate at 20,000 cells/well.
At 50 % confluence, scratches were made. Differentiation
medium with beta-glucan (BG + diff) was used to
stimulate mineralization for 14 days with medium changes
every 3 days. Cells were fixed with 4 % paraformaldehyde
and stained with pH 4.2 alizarin red S solution (Sigma-
—Aldrich). After incubation and washing, calcium
deposits were measured by destaining with 10 % cetyl-
pyridinium chloride monohydrate. The stained solution
was measured using a spectrophotometer (Tecan Trading
AG) at 550 nm.

Gene expression using quantitative real-time PCR
(qRT-PCR)

To evaluate DSPP, IL-10, and COL1, HDPCs at 200,000 cells/
well were seeded in a 6-well plate and induced as previ-
ously described. Cells were collected on day 14. RNA
extraction was performed with TRIzol (Invitrogen), fol-
lowed by cDNA synthesis using the ReverTra Ace™ qPCR RT
Kit (TOYOBO, Osaka, Japan). Gene expression was
measured on the LightCycler® 480 Il system (LifeScience,
Roche, Indianapolis, IN, USA) using SYBR Green PCR master
mix (SensiFAST™ SYBR® No-ROX Kit) (Bioline, Memphis, TN,
USA). Relative expression levels were calculated by the
2722 method, employing GAPDH as the internal control.
Primer sequences are provided in Table 1.

Statistical analysis

One-way analysis of variance (ANOVA) was performed using
SPSS Statistics 21.0 (IBM, Chicago, IL, USA), with Tukey’s or
Dunnett’s T3 test applied for post-hoc analysis. Statistical
significance was set at P < 0.05.

Table 1 Primer sequences of genes used in the study.
DSPP: dentin sialophosphoprotein. IL-10: interleukin 10.
COL1: collagen type |I. GAPDH: glyceraldehyde-3-phosphate
dehydrogenase.

Gene
DSPP

Primer sequences (5'-3')

Forward primer: TGG CGA TGC AGG TCA CAAT
Reverse primer: CCA TTC CCA CTA GGA CTC CCA

IL-10  Forward primer: CCC AGA AAT CAA GGA GCATT
Reverse primer: CTC TTC ACC TGC TCC ACT GC
COL1 Forward primer: GAT GAT GCC AAT GTG GTT CGT G

Reverse primer: CAG GCT CCG GTG TGA CTC GT
GAPDH Forward primer: ACC ACA GTC CAT GCC ATC AC
Reverse primer: TCC ACC ACC CTG TTG CTG TA

Results

Cell proliferation assay

All concentrations (1, 2.5, 5, 7.5, and 10 mg/mL) of beta-
glucan significantly increased cell proliferation relative to
the control and vehicle groups at 24 h (P < 0.05) (Fig. 1A).
At 48 h, cell proliferation trends increased in all beta-
glucan groups, with the 10 mg/mL concentration showing
significant stimulation compared to the control and vehicle
groups (P < 0.05) (Fig. 1B). At 72 h, beta-glucan concen-
trations of 5, 7.5, and 10 mg/mL significantly increased cell
proliferation relative to the control and vehicle groups
(P < 0.05) (Fig. 1C). The 10 mg/mL concentration notably
enhanced cell proliferation compared to the 1, 2.5, and
5 mg/mL concentrations (P < 0.05).

Based on the proliferation assay results, 5, 7.5, and
10 mg/mL of beta-glucan demonstrated the greatest cell
proliferation. These concentrations were selected for the
subsequent part of the experiment.

Wound healing assay

The results showed no significant difference was observed
in wound closure between the groups at 24 h. However, at
24 h, the concentrations of 5, 7.5, and 10 mg/mL of beta-
glucan significantly enhanced wound closure when
compared to the control and vehicle groups (P < 0.05)
(Fig. 2A). The 10 mg/mL concentration of beta-glucan
showed the most extensive wound closure (P > 0.05).
Similar repairing potentials were observed among the beta-
glucan-treated groups.

Integrin beta 1 expression

The findings indicated that beta-glucan at 5 and 7.5 mg/mL
significantly increased the expression of integrin beta 1
when compared to the control group (P < 0.05). The con-
centrations of 5, 7.5, and 10 mg/mL of beta-glucan signif-
icantly induced the expression of integrin beta 1 when
compared to the vehicle group (P < 0.05). Similar expres-
sions were observed among the beta-glucan groups
(Fig. 2D).
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The proliferative effect of beta-glucan on HDPCs. (A) Cell proliferation at 24 h. (B) Cell proliferation at 48 h. (C) Cell

proliferation at 72 h. (D) Cells at 72 h under an inverted-light microscope at 5x magnification Scale bar = 50 um. Different letters
in the graph represent significant differences between groups. BG: beta-glucan.

Alizarin red S staining

A significant increase in mineralized matrix formation was
observed when compared to control and vehicle groups
(P < 0.05). The addition of 5, 7.5, and 10 mg/mL of beta-
glucan to differentiation media resulted in a significantly
higher level of mineralized matrix formation when
compared to control and vehicle groups under differenti-
ating conditions (P < 0.05). Similar results were observed
among the beta-glucan groups (Fig. 3A).

The expression of mineralization-related and
collagen synthesis-related genes

The expression of the DSPP gene significantly increased in
the control, BG5, BG7.5, and BG10 groups under differen-
tiating conditions compared to the control group (P < 0.05).
Similar levels of DSPP expression were observed between
the beta-glucan-treated groups and the control group under
differentiating conditions. However, both the BG5 and
BG7.5 groups showed a significant increase in DSPP
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expression compared to the vehicle group (P < 0.05)
(Fig. 3C). Regarding IL-10 expression, all the BG5, BG7.5,
and BG10 groups exhibited a significant upregulation of IL-
10 expression compared to the control group (P < 0.05).
Compared to the control group under differentiating con-
ditions, the BG5 and BG10 groups displayed a significant
elevation in IL-10 expression (P < 0.05). Additionally, all
the BG5, BG7.5, and BG10 groups induced a significant in-
crease in IL-10 expression compared to the vehicle group
(P < 0.05) (Fig. 3D).

In terms of collagen gene expression, significant upre-
gulation of COL1 was observed in the BG5 and BG10 groups
under differentiating conditions compared to the control
group (P < 0.05). When compared to the control with dif-
ferentiation media group, only the BG5 group exhibited a
significant increase in COL1 expression (P < 0.05). However,
all the BG5, BG7.5, and BG10 groups displayed significant
upregulation of COL1 when compared to the vehicle group
in differentiation media (P < 0.05). There was also a sig-
nificant difference in COL1 expression between the BG5
group and both the BG7.5 and BG10 groups (P < 0.05)
(Fig. 3E).
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Figure 2 The migration potential of HDPCs after exposure to beta-glucan. (A) The migration potential results presented at the
12-h and 24-h time points. (B) Representative images of the migrated cells from the wound healing assay at 0, 12, and 24 h. The
scale bar represents 50 um. (C) The percentage of integrin beta 1 positive cells in HDPCs. (D) After 24-h exposure to beta-glucan,
the expression of integrin beta 1 was assessed using MFI and presented as a percentage difference compared to the control. *
indicates significance compared to the control group while # indicates significance compared to the vehicle group. BG: beta-glucan.

MFI: mean fluorescence intensity.

Discussion

The potential use of beta-glucan for pulpal wound healing
was examined in isolated human dental pulp cells, focusing
on cell proliferation, migration, collagen synthesis, and
mineralization. Significant positive effects were observed
at concentrations of 5—10 mg/mL, suggesting beta-glucan
could promote healing in both soft tissue and mineraliza-
tion, indicating its promise for regenerative endodontics.

Beta-glucans are complex polysaccharides found in
various natural sources, known for numerous health ben-
efits, including wound healing.'”~%° They mediate healing
through several receptors, particularly dectin-1, found on
immune and non-immune cells such as keratinocytes, fi-
broblasts, and dental pulp tissues.'”?""*2 Despite exten-
sive research on their wound-healing effects, no studies
have specifically examined their impact on dental pulp
cells until now.

Current dental treatments, especially VPT, emphasize
regenerative trends where dental pulp cells are crucial.
VPT aims to maintain pulp vitality and promote healing

post-infection removal.’ Dental pulp cells initiate and co-
ordinate healing responses, including proliferation, migra-
tion, differentiation into odontoblasts, and reparative
dentin formation.” Enhancing dental pulp cell potential is
key to successful VPT outcomes.

In this study, beta-glucan enhanced dental pulp cell
proliferation, migration, mineralization, and differentia-
tion, with higher concentrations (5—10 mg/mL) being more
effective. These findings are consistent with previous
studies on beta-glucan’s effects on other cell types. In vitro
studies have shown that beta-glucan promotes cell prolif-
eration across various cell types. For instance, 0.2 mg/mL
mushroom-derived beta-glucan stimulated keratinocyte
proliferation within 48—72 h.?* High concentrations (5 mg/
mL) also showed greater efficacy in promoting fibroblast
cell growth compared to lower doses.*

Cell migration is also crucial for wound healing, and
previous studies have shown that beta-glucan enhances
keratinocyte and fibroblast migration.'®'"?> Similarly, our
study found that beta-glucan promoted HDPC migration in
wound healing assays. Migration involves complex processes
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Figure 3

The effect of beta-glucan on mineralized matrix formation and collagen synthesis of HDPCs. (A) The quantitative

analysis of mineralized matrix formation at 14 days. (B) Alizarin red staining of the experimental groups under a light microscope at
a magnification of 5x. Scale bar = 50 um. (C) The expression of the mineralization-related gene: DSPP (D) The expression of IL-10,
and (E) The expression of collagen synthesis-related gene: COL1. * indicates significance compared to the control group. # indicates
significance compared to the vehicle group. @ indicates significance compared to the control + diff group. 4 indicates signifi-
cance compared to the vehicle + diff groups. B indicates significance between two different groups. OD: optical density. BG: beta-

glucan. Diff: differentiation medium.

where integrins, acting as cell surface receptors, connect
the extracellular matrix (ECM) to the cell’s cytoskeleton
and activate the FAK-Src pathway to facilitate move-
ment.?®"?® Previous research has associated increased cell
migration with the expression of specific integrin subunits,
including integrin alpha 3, alpha 5, and beta 1.2° 3" In this
study, the expression of integrin beta 1 correlated with
improved HDPC migration following beta-glucan treatment,
suggesting an association between these factors.

Collagen is essential for wound healing, providing
structural support and maintaining tissue integrity within
the ECM.3? IL-10 also plays a significant role in tissue for-
mation and maturation, facilitating organized ECM deposi-
tion without compromising strength.>*3* Our study reveals
that beta-glucan stimulates collagen synthesis gene (COL1)
expression in HDPCs, aligning with previous research on
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human dermal fibroblasts.>> A consistent pattern of IL-10
and COL1 expression across beta-glucan-treated groups
suggests IL-10’s role in maintaining balance during wound
healing.

For pulpal healing, a key goal is cell differentiation into
mineral-producing cells. Various genes, including DSPP,
DMP-1, and BMP, are involved in mineralization, with DSPP
recognized as a marker of odontoblastic differentia-
tion.>*3” Our study showed upregulation of DSPP expression
and observed mineralization after beta-glucan treatment.
While limited studies have examined beta-glucans’ direct
influence on mineralization, some reported mineralized
matrix formation and bone deposition in beta-glucan-
incorporated scaffolds.'®*%3 Further research is needed
to explore beta-glucan’s direct role in mineralization,
including dentinogenic differentiation.
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These finding suggest that beta-glucan may have a sup-
portive role in processes relevant to dental pulp healing.
The healing process following VPT involves complex cellular
and molecular mechanisms that support pulp tissue regen-
eration and repair.”® Stimulating early cell proliferation,
migration, and differentiation is critical for the success of
VPT, and beta-glucan shows promising potential in these
aspects. Its ability to enhance these processes highlights its
possible application in improving the outcomes of VPT.
However, further research is needed to fully understand
the mechanisms behind beta-glucan’s effects on HDPCs and
to assess its long-term impact on pulp tissue regeneration
and repair in vivo.

In conclusion, our study found that beta-glucan at con-
centrations of 5, 7.5, and 10 mg/mL demonstrated the
ability to stimulate cell proliferation, cell migration,
integrin beta 1 expression, and mineralization in HDPCs.
The expression of IL-10, COL1, and DSPP genes was upre-
gulated. This study highlights the potential of beta-glucan
as a valuable enhancer of processes critical to dental pulp
healing, paving the way for innovative approaches in
regenerative endodontics.
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