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Abstract Currently, the concept of regeneration and regenerative therapies are already be-

ing applied clinically to treat pulpal and periodontal diseases, as well as to repair and regen-

erate systemic organs and tissues. During wound healing, well-developed, functional vascular

networks and revascularization are fundamental factors in restoring regenerative potential.

Growth factors, stem cells, and scaffolds alone or in combination are reported to contribute

to successful tissue repair and engineering via cell transplantation, cell homing or other tech-

nologies. Among the growth factors, basic fibroblast growth factor (bFGF) has been found to

regulate the proliferation, stemness, migration, and differentiation of vascular and mineral-

ized tissues into various cell types through the differential activation of FGF receptors (FGFRs)

and downstream signaling pathways. In addition to growth factors, various dental stem cells
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are widely used for the regeneration of diseased or lost dental pulp and periodontal tissues,

yielding promising results. Stem cells from the apical papilla (SCAPs) and dental pulp stem cells

(DPSCs), with or without bFGF, have been shown to be crucial for angiogenesis/revasculariza-

tion, neuronal growth, and the repair/regeneration of the pulpo-dentin complex, apexogen-

esis, and may potentially be used in the future to treat various systemic diseases such as

myocardial infarction, diabetes, retinopathy, and others. Further studies are needed to opti-

mize the use of bFGF and dental stem cells such as SCAPs and DPSCs by using cell transplan-

tation, cell homing or other technologies for tissue and organ regeneration in experimental

animal models and, eventually, in clinical patients in the future.

© 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Introduction

Recently, the field of medical science has made significant

progress due to advancements in techniques driven by the

dedicated efforts of scientists and clinicians working to

meet patients’ expectations. Modern medicine now focuses

not only on reducing mortality rates but also on preserving

patients’ self-care abilities and quality of life. How to

repair, regenerate and replace the lost tissue and organ due

to various diseases is a critical health and clinical treatment

issue. Wound healing typically occurs in four key stages:

hemostasis, inflammation, proliferation, and remodeling.1

The success of tissue repair and regeneration depends on

the efficiency of these processes, which in turn affects the

effectiveness of clinical therapies. As a result, this area has

inspired many scientists to investigate the crucial mole-

cules, materials/scaffolds, cells and underlying mecha-

nisms, with the belief that improving our understanding of

the repair and regeneration processes could lead to better

prognosis following treatment.1,2 This is why regenerative

medicine, which aims to regenerate oral tissues or other

organs with normal function, plays a crucial role in

advancing modern medical and dental practice. Regenera-

tive therapies are generally categorized into cell-based and

non-cell-based approaches, depending on whether exoge-

nous cells are used (Fig. 1).3,4 Studies have shown that cell-

based therapies can enhance various cellular activities,

such as proliferation and differentiation. However, chal-

lenges remain, including ethical concerns regarding the

source and transplantation of exogenous stem cells, as well

as the complexity of the application procedures.4 Addi-

tionally, while stem cell transplantation may offer an

alternative to conventional therapies, there is still insuffi-

cient clinical evidence to support its widespread

viability.5,6 The sources of autogenous tissues or stem cells

for transplantation into the diseased sites are also limited

and one major ethical concern. Therefore, more research is

needed to advance clinical applications in the future. On

the other hand, cell homing presents fewer challenges

compared to cell transplantation. Since it does not require

exogenous cells, it is a simpler technique with no ethical

concerns. Endogenous cells, one of the sources used in cell

homing, are recruited to the targeted site through the

interaction of specific molecules. There is now ample

evidence supporting the essential components of regener-

ative strategies. Their synergistic effects have been shown

to enhance cellular abilities such as migration, differenti-

ation, and proliferation.4,5,7 In addition to stem cells and

growth factors, the use of biocompatible scaffolds further

contributes to the success of tissue engineering treatments

by enabling the controlled release of key components.8—10

In regenerative strategies, revascularization refers to

the process of inducing the formation of new vascular or

capillary networks. Based on the principles of tissue heal-

ing, researchers have been inspired by the idea that

enriched vascular networks are essential for supplying

adequate nutrients and oxygen during the healing process.

Studies have shown that revascularization is beneficial for a

variety of conditions, including burns, post-surgical

wounds, cardiac diseases, and retinal pathologies, all of

which can benefit from regenerative approaches.1,11—14

Additionally, this process may also enhance cellular capa-

bilities in tissue engineering. In the context of endodontic

regenerative strategies, pulp revascularization―a form of

cell homing technique is already applied for treatment of

non-vital teeth with an open apex and has been demon-

strated to have positive effects in pulpal healing and

regeneration.5

Cell homing is a multistep process that recruits exoge-

nous or endogenous stem cells to migrate toward the target

site through the induction of various signaling molecules.

Previous studies have shown that several angiogenesis-

related molecules, including basic fibroblast growth factor

(bFGF), vascular endothelial growth factor (VEGF), early

growth response factor-1 (Egr-1), platelet-derived growth

factor (PDGF), transforming growth factor-β (TGF-β), and

granulocyte colony-stimulating factor (G-CSF), play a

beneficial role in the revascularization and tissue repair

processes.7,12,15,16 These molecules enhance the mobility,

migration and differentiation of stem cells to injury sites,

thereby supporting regenerative strategies in diabetes,

myocardial, retinal, cutaneous, and dental patho-

logies.12,13,17—19 Although there were many studies focused

on dental pulp stem cells (DPSCs) applied on the regener-

ative application, it lacked for integrating the application

of stem cells from apical papilla (SCAPs) and their associ-

ation with bFGF for pulpo-dentin regeneratiion. In this re-

view, we focus on the clinical applications of bFGF and
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SCAPs or HDPCs for vascular formation and tissue

regeneration.

Fibroblast growth factors

Since 1973, human FGFs family members have been studied

for their structures and specific mechanisms. It is known

that the human FGF family consists of 22 members, which

are divided into seven subfamilies. Among these, only the

FGF19 subfamily belongs to the endocrine FGFs, with the

Klotho protein acting as a cofactor for them. The other

FGFs, classified as paracrine FGFs, exhibit a high affinity for

heparin.20,21 Researchers have found that the use of hep-

arin or heparan sulfate proteoglycans (HSPGs) can provide a

synergistic effect on pluripotent cellular responses when

paracrine FGFs bind to their receptors.10,20—22 This appli-

cation has been shown to have positive effects on the local

Figure 1 Cell homing and cell transplantation technologies for regenerative therapy. (A) Cell homing technique utilizes growth

factors or other molecules to induce endogenous stem cells to proliferate and migrate to the diseased site, and then differentiate,

repair and regenerate the lost tissues, (B) Cell transplantation is the placement (by injection or surgery) of exogenous cells with/

without treatment by various growth factor to the diseased sites, to promote the endogenous cells to the target sites for tissue/

organ regeneration.
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healing of the spinal cord, cardiovascular system, bones,

skin, and pulp.20—22 Studies have also demonstrated that

FGFs are responsible for various biological functions,

including mitogenesis, embryonic development, cell

motility, differentiation, angiogenesis, and wound repair

and regeneration.10,23 Based on this knowledge, clinicians

have attempted to apply FGF-related treatments to aid in

the healing of burns and ulcers.22 Each subfamily of FGFs is

involved in specific mechanisms. For example, acidic

fibroblast growth factor (aFGF) and bFGF (basic fibroblast

growth factor) have been shown to induce angiogenesis in

endothelial cells.10 Various signaling pathways are acti-

vated through the interaction between FGFs and their

specific receptors, enhancing the biological functions both

in vitro and in vivo.24 Some potential applications of

various FGF-related treatments for mucositis, periodontal

regeneration and wound healing are summarized in

Table 1.25—31 The role of bFGF in the dental pulp develop-

ment, repair, and regeneration has been suggested via in-

fluence on cell proliferation, differentiation, angiogenesis,

neural differentiation, dentoalveolar mineralization.32,33

However the effects of other type of FGFs on dental pulp

repair and regeneration are limited and awaits further

investigation.

Fibroblast growth factor receptors and their

expression in healthy and diseased dental pulp and

other tissues

There are four transmembrane tyrosine kinase receptors in

the fibroblast growth factor receptor (FGFR) family: FGFR1,

FGFR2, FGFR3, and FGFR4. Each FGFR consists of an

extracellular ligand-binding domain, a transmembrane re-

gion, and an intracellular tyrosine kinase domain. The

extracellular domain is composed of three immunoglobulin

(Ig) domains (D1—D3), with FGFs binding primarily to the

D2—D3 region. This binding induces FGFR dimerization and

subsequent transphosphorylation of the intracellular

domain.34 It is well established that FGFR binding on various

cell types can modulate specific cellular responses.10

Additionally, the relationship between the increased

expression of FGFRs and various diseases such as breast

cancer, lung cancer, gastroesophageal cancer, bladder

cancer, and hepatocellular carcinoma has been

reported.35—39 As noted above, numerous studies have

investigated the regulation of FGFRs as a potential thera-

peutic approach for these diseases. In the oral cavity,

FGFR1, 2, 3 and 4 are found to be differentially expressed

in developmental tooth root, human DPSCs and SCAP with

associated activation of transforming growth factor-β-

activated kinase 1 (TAK1), extracellular signal-regulated

kinase kinase (MEK)/extracellular signal-regulated kinase

(ERK), p38 mitogen-activated protein kinase (MAPK), but

inhibition of phosphoinositide-3-kinase (PI3K)/protein ki-

nase B (Akt) signaling.40—44

Basic fibroblast growth factor

Among the FGF family, bFGF has been shown to induce

various biological activities, including cell migration and

differentiation. Notably, it acts as a key regulator of

angiogenesis in vivo.23,32 In the context of tissue engi-

neering, bFGF has demonstrated an aggregating effect on

stem cells from various origins, including bone marrow

mesenchymal stromal cells (BMMSCs), adipose tissue-

derived mesenchymal stem cells (ADMSCs), SCAPs, DPSCs,

and stem cells from human exfoliated deciduous teeth

(SHED).9,45—47

As a paracrine FGF, bFGF interacts with heparin/hep-

aran sulfate (HS), a property that may help protect it from

enzymatic degradation.21,46 Studies have reported that

bFGF can promote revascularization both directly and

indirectly through the paracrine effects of mesenchymal

stem cells. Additionally, it has been found to enhance the

effects of follicle-stimulating hormone, parathyroid hor-

mone, Egr-1, and breviscapine treatment.14,16,48,49 In the

dental pulp, bFGF was shown to stimulate proliferation, but

inhibited alkaline phosphatase activity possibly via MEK/

ERK signaling.41 bFGF also stimulated the neuronal differ-

entiation, angiogenesis, dentoalveolar mineralization,

tooth root formation by regulation the activities of DPSCs

and other types of cells.33,40,50,51

Table 1 The potential use of various FGFs in clinical treatment.

Medicine/components FGF types Functions

Palifermin FGF7 For improving the radiotherapy- or chemotherapy-related oral

mucositis.22,25

Repifermin FGF10 For preventing the mucositis after autologous hematopoietic stem cell

transplantation.26

FGF2 FGF2 For enhancing the healing process of chronic tympanic membrane

perforation.27

For benefiting burns or chronic ulcers healing.2,28—30

For the periodontal regeneration of replanted avulsed teeth.31

FGF19 FGF19 For regulating systemic molecules including glucose, phosphate, and bile

acid.22

Proangiogenic

growth factors

(FGF2, VEGF, and PDGF)

Growth factor

mixture

For inducing revascularization and healing in diabetic wounds.12

VEGF: vascular endothelial growth factor, PDGF: platelet-derived growth factor.
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Dental stem cells

There are many stem cell sources from teeth and sur-

rounding tissues. One of them is DPSCs which are originated

from dental pulp and show gene expressions of CD271,

CD166, CD146, CD106, CD105, CD90, CD73, CD59, CD49,

CD44, CD29, CD13, CD10, CD9. They showed higher

expression of NANOG and SOX2 than periodontal ligament

stem cells (PDLSCs), and SCAPs are suspected with highly

proliferative potential compared with DPSCs. Both of them

showed the ability of differentiation into adipocytes and

odontoblasts, however, several studies have indicated that

SCAPs are considered to have a higher mineralization po-

tential.52 Besides, compared with DPSCs and PDLSCs, an

in vivo study described that SCAPs had the greater ability

for mineral tissue formation.53 According to the origin,

SCAPs are believed to play a key role on the pulpal revas-

cularization.5,54 DPSCs under the effect of bFGF showed

evident angiogenic and neurogenic differentiation.55 The

comparative summary of DPSCs and SCAPs shown in Table 2.

Potential roles of basic fibroblast growth factor,

dental pulp stem cells and stem cells from apical

papilla in treatment of cardiac, retinal,

cartilaginous, tracheal pathologies, and diabetes

In cardiac diseases, tissue engineering for myocardial

infarction has been under development for years, with

revascularization at the transplantation site playing a

crucial role in achieving a satisfactory prognosis. Restoring

a mature and abundant vascular system remains a key

objective in regenerative healing. Studies have shown that

vascular growth factors, such as bFGF, when attached to a

biocompatible scaffold, enhance angiogenesis.8 Addition-

ally, systemic injection of bFGF has been found to improve

cardiac function when used in conjunction with human

pluripotent stem cell (hPSC)-derived cardiovascular

progenitor cells (CPCs) as a regenerative treatment.17

Accordingly, photobiomodulation by low level laser was

shown to stimulate bFGF, VEGF-A, VEGF-C, VEGF-D, bone

morphogenetic protein-9 (BMP-9) and VEGF receptors’

expression and capillary-like vascular structure formation

in DPSCs.56

Percutaneous trans-myocardial revascularization (PTMR)

and trans-myocardial revascularization (TMR) have also

been shown to promote angiogenesis within the channel

remnants they create.57 Research indicates that the com-

bination of TMR with vascular growth factors―including

VEGF, bFGF, and insulin-like growth factor-1 (IGF-1)―en-

hances both transplanted cell survival and left ventricular

(LV) function in laboratory animal models. As a result, while

TMR alone contributes to revascularization, the addition of

vascular growth factor therapy significantly amplifies

angiogenic effects.58 Furthermore, trans-myocardial dril-

ling revascularization combined with heparinized bFGF-

incorporated degradable stent implantation (TMDRSI) has

demonstrated notable benefits for acute myocardial

infarction, including enhanced cell proliferation, survival,

myocardial remodeling, and LV function. Moreover, this

approach, when combined with BMMSCs transplantation,

further improves myocardial regeneration.11,59 Munarin

et al. reported that regenerative engineering therapy uti-

lizing VEGF and bFGF accelerated angiogenesis in a three-

dimensional (3D) model.60 This marked a significant

breakthrough, transitioning from traditional two-

dimensional models to a more physiologically relevant 3D

perspective. Intriguingly miR4732-3p mimic treatment and

extracellular vesicles from human DPSCs showed cytopro-

tective of cardiomyocytes and preserved cardiac functions

against ischemic insult, decrease infarct and cardiac

inflammation in infarct nude rats.61,62 Intramyocardial in-

jection of DPSCs into infarct nude rats significantly induced

angiogenesis, decreased infarct size, and improve ventric-

ular functions.63 Moreover, DPSCs was found to attenuate

the D-galactose-induced cardiac aging in experimental

Table 2 Comparison of the characteristics of DPSCs and SCAPs.52—55

DPSCs SCAPs

Origin Dental pulp Apical papilla

Surface MSC markers CD271, CD166, CD146, CD106, CD105, CD90,

CD73, CD59, CD49, CD44, CD29, CD13,

CD10, and CD9; but not CD133, CD117,

CD45, CD34, CD31, CD24, CD19, or CD14

CD166, CD146, CD106, CD105, CD90, CD73,

CD61, CD56, CD51, CD44, CD29, CD24, and

CD13; but not CD150, CD117, CD45, CD34,

CD18, or CD14

Proliferation potential Lower Higher

Tissue formation Higher ability of vascular formation Higher mineralization potential

Differentiation potential - Odontogenesis

- Adipogenesis

- Myogenesis

in vitro study showed)

- Odontogenesis

- Adipogenesis

- Neurogenesis

- Osteoblastic cells.

bFGF application - Promote the proliferation

- Enhance the tendency to angiogenic and

neurogenic differentiation

- Promote the proliferation

- There is not enough evidence indicating

that bFGF can induce the specific differ-

entiation pathways on SCAPs.

MSC: mesenchymal stem cells, bFGF: basic fibroblast growth factor.
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rats.64 All these results support the important role of bFGF

and stem cells from dental pulp and other sources for

treatment of myocardial diseases. However, further studies

are needed to know the possible use of SCAPs and sub-

stantiate these findings and optimize their clinical

application.

In retinal, cartilaginous, tracheal pathologies and dia-

betes, tissue regeneration is closely linked to revasculari-

zation. In retinal pathologies such as retinopathy of

prematurity (ROP), pathological neovascularization can

lead to blindness. Studies have shown that treatment with

an appropriate dose of VEGF or bFGF gene therapy can

protect astrocytes and enhance physiological revasculari-

zation.13 Autologous DPSCs from extracted 3rd molar was

further found to improve the corneal endothelial cell pro-

duction and avoid corneal transplantation.65 Both human

DPSCs and SCAPs or their extracellular vesicles are found to

provide retinal ganglion cell neuroprotection, promote

retina cells formation, as well as retina and optic nerve

injury regeneration with expression of biomarkers’ gene of

retina epithelial cells and retina progenitor cells such as

Retina and anterior neural fold homeobox (RAX), PAX6, LIM

homeobox 2 (LHX2), SIX homeobox3 (SIX3), Zonula

occludens-1 (ZO-1), Retina pigment epithelium specific 65-

kD protein (RPE65), Bestrophin-1 (BEST1), Cellular reti-

naldehyde binding protein (CRALBP), and Melanocyte

inducing transcription factor (MITF). This can be derived

from the paracrine effect or cell replacement by human

DPSCs and SCAPs for treatment of retina diseases.66—69 In

addition, applying these growth factors to the auricular

perichondrium has been shown to induce angiogenesis.

Furthermore, experiments using angiogenic inhibitors have

suggested a potential relationship between revasculariza-

tion and cell/tissue regeneration.70 In tracheal healing,

topical administration of fibrin glue enriched with bFGF

improves the viability of de-vascularized trachea autograft

than no treatment, suggesting the possible importance of

bFGF to enhance vascular networks formation.71

In the context of islet transplantation for diabetic pa-

tients, a major challenge is the lack of islet vascularization

due to impaired extracellular matrix (ECM) proteins.72—74

Recombinant collagen combined with bFGF has been shown

to promote angiogenesis and mimic the environment

necessary for ECM secretion.73 Research has demonstrated

that bFGF-induced revascularization is a fundamental

mechanism of tissue regeneration. Moreover, human DPSCs

can differentiate to insulin producing islet cells, and are

shown to be effective for treatment when transplanted into

diabetic rats.75,76 Similarly, SCAPs are also found to

differentiate into pancreatic β-islet cells as indicated by

expression of C-peptide, glucagon and insulin.77 So HDPCs

and SCAPs can be potentially used for treatment of dia-

betes However, many underlying mechanisms remain to be

fully elucidated.

Role of basic fibroblast growth factor and dental

pulp stem cells in revascularization

The proliferation of human DPSCs is induced by various

concentrations of exogenous bFGF.55 And in vitro study

demonstrated that bFGF induces a cell homing effect in

DPSCs, comparable to that elicited by granulocyte colony-

stimulating factor (G-CSF). It was suggested that bFGF

plays a significant role in the migration of endogenous

progenitor cells toward sites of regeneration.5 Under the

action of bFGF, DPSCs showed direct endothelial differen-

tiation. Apart from direct endothelial differentiation, stem

cells promote vascularization through a paracrine regula-

tory relationship by secreting angiogenic factors, which

indirectly stimulate endothelial cell activity. However,

there is insufficient evidence to demonstrate the exoge-

nous bFGF having the direct influence on the secretion of

angiogenic factors by DPSCs or SCAPs.78 This point can be

further addressed in the future.

Role of basic fibroblast growth factor and stem cells

from apical papilla in pulpal revascularization and

regeneration

Two critical factors for the success of endodontic treatment

are complete disinfection and the healing process. Several

pulp capping materials, such as calcium hydroxide and

mineral trioxide aggregate (MTA), are used for treating pulp

pathologies. However, their role in pulp regeneration is

limited.45 The goal of regenerative endodontics is to induce

pulp- and dentin-like tissues to restore the pulp vitality.7

Although cell-based therapy for open apices has enhanced

regeneration, greater cell-homing effects and a clearer

understanding of the therapeutic limits regarding defect

size are necessary to achieve satisfactory prognoses.4

Among these factors, an abundant vascular network serves

as a cornerstone for successful regeneration, as it delivers

essential nutrients and growth factors required for cell

proliferation and differentiation.

Currently, pulp revascularization is primarily applied to

immature teeth, as their sufficiently large apical foramen

provides the necessary vascular network for regenera-

tion.7,79 In contrast, mature teeth with closed apices face

challenges in dental tissue regeneration due to limited

nutrient, oxygen, and growth factor supply through vascu-

larization. A systematic review indicated that stem cell

transplantation may enhance pulp regeneration; however,

the number of studies conducted has been limited and

possibly lacks standardization.6 Autotransplantation of

minced dental pulp tissues from third molars of 6 patients

to the instrumented, disinfected and blood filled mature

permanent teeth showed partial success with 3 cases

showing root canal calcification and 1 case showing pulpal

sensitivity.80 In 51 permanent teeth with pulp necrosis and

apical periodontitis, inducing blood clot methods or appli-

cation platelet-rich fibrin (PRF) were used for regenerative

endodontics with an overall success rate of 76.5 % and re-

covery of pulpal sensitivity in 17.6—41.2 % of teeth.81 In 32

patients with non-vital anterior teeth, after mechanical

debridement, either PRF placement, or 3 weeks of Ca(OH)2

medication followed by PRF placement into root canals

showed partial clinical success.82 While recently regener-

ative endodontic procedures was reported to offer an

alternative treatment for necrotic mature teeth with

promising results, more standardized therapeutic protocols

are required for further confirmation.83
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Various studies have demonstrated that bFGF induces

revascularization by preserving endothelial cell survival and

stimulating cell migration, proliferation, differentiation,

and the secretion of vascular factors, including VEGF and

hepatocyte growth factor (HGF), in a concentration- and

time-dependent manner. SCAPs are also shown to differ-

entiate into neuronal-like cells, which is important for

pulpal regeneration.84 Given the promising results of cell-

based regeneration in medical science, researchers have

explored the use of dental-derived tissues as a more

accessible source for cell therapy. Studies have shown that

bFGF enhances stem cell expression, and preserves the

pericyte-like characteristics of DPSCs, thereby promoting

angiogenesis and maintaining vessel-like structures.45,85

bFGF was found to stimulate the growth, with increased

expression of cyclin B1, cdc2, and tissue inhibitor of

metalloproteinase-1 (TIMP-1) of SCAPs via associated MEK/

ERK signaling.41 bFGF also stimulates plasminogen activator

inhibitor-1 (PAI-1), urokinase plasminogen activator recep-

tor (uPAR), but decrease uPA to regulate matrix turnover in

SCAPs.42 Additionally, bFGF-loaded biocompatible scaffolds

have demonstrated the ability to modulate odontogenic-

related protein expression in human dental pulp cells,

thereby enhancing regenerative potential.45

While cell-based therapy has shown strong regenerative

potential, cell homing is emerging as a novel and more

clinically feasible approach in regenerative endodontics.

Kim et al. provided evidence for the regenerative potential

of cell homing by utilizing basal cytokines in combination

with PDGF, VEGF, or bFGF.15 Studies have suggested that a

mixture of growth factors can effectively recruit endoge-

nous stem cells; however, minimizing the number of cyto-

kines used should be considered.15 Further research is

necessary to establish the clinical feasibility of growth

factors and cell homing strategies for future regenerative

strategy.

Conclusions

DPSCs, SCAPs, bFGF or other growth factors alone or in

combination can be potentially used to induce revascular-

ization and regeneration for dental root and other systemic

organs such as heart, retina, pancreas, cartilage, and more

others via cell transplantation, cell homing and other

techniques (Fig. 2). The application of bFGF and stem cells

are shown to have promising results in enhancing the pro-

liferation, migration, angiogenesis, and differentiation for

regeneration of dental pulp and other tissues both in vitro

and in vivo. However, their clinical applications―whether

through cell transplantation or cell homing―remain inad-

equately understood. Further studies are needed to eluci-

date whether bFGF can induce vascular cell differentiation

and angiogenesis of HDPCs and SCAPs and the associated

signaling mechanisms. How to optimize cell transplantation

delivery systems, develop more effective cell homing

strategies and clinically apply bFGF and dental stem cells in

conjunction with various biomaterials or other growth

Figure 2 Human dental pulp cells (HDPCs), stem cells of apical papilla (SCAPs), basic fibroblast growth factor (bFGF) or other

growth factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) alone or in combination

can be used to promote regeneration for tissues/organs such as dental root, heart, retina, pancreas, cartilage, and more others via

cell transplantation, cell homing and other techniques.
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factors for tissue/organ regeneration can be further

explored. Whether similar clinical revascularization pro-

cedures with induction of blood clot formation, application

of PRF or various growth factors with scaffolds can be used

to stimulate pulpo-dentin regeneration in necrotic pulp of

mature teeth with closed root apex should be further

addressed in the future.
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