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Abstract Accelerated senescence models are increasingly utilized in aging research; howev-

er, their application in dental studies remains relatively limited. This scoping review investi-

gates the use of these models within oral research. A systematic search of PubMed and Web

of Science was conducted, following PRISMA-ScR guidelines and registered with the Open Sci-

ence Framework, to identify relevant in vivo studies published between January 2020 and

March 2025. Eligible studies involved accelerated senescence animal models in oral health con-

texts. Data were extracted on animal types, induction methods, aging biomarkers (e.g., P53,

P21, P16, SA-β-gal), and outcomes for narrative synthesis. From 377 screened articles, 29 met

the inclusion criteria. Three primary types of models were identified: chemically induced,
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physically stress-induced, and genetically based. The majority of studies focused on periodon-

titis (41.4 %), followed by salivary gland dysfunction. Key aging features examined included

cell cycle arrest (79.3 %), senescence-associated secretory phenotypes, oxidative stress, and

lysosomal alterations. Diabetes-induced aging was employed in 37.9 % of studies, and mice

were the predominant animal model used (75.9 %). The findings suggest that accelerated

senescence models show promise in oral aging research, especially in periodontitis and

diabetes-related conditions. Incorporating multiple biomarkers may enhance model relevance

and support targeted strategies in geriatric oral care.

© 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Introduction

Aging is a universal biological process marked by a progres-

sive decline in physiological integrity, characterized by the

accumulation of cellular damage and tissue dysfunction. This

deterioration leads to impaired microcirculation, multi-

system failure, and ultimately compromises overall organ-

ismal health.1,2 As the global population continues to age,

according to United Nations (UN) projections, the number of

adults aged 65 andolder will reach 2.2 billion by 2070, placing

age-related diseases at the forefront of public health con-

cerns.3 Among these, oral health issues are particularly

prevalent yet often underrecognized. In 2021, approxi-

mately 3.69 billion people were affected by oral diseases,

with conditions like severe periodontitis and tooth loss

disproportionately affecting aging populations.4,5 Further-

more, elderly individuals frequently present with systemic

conditions such as diabetes and osteoporosis, which may

impair bone remodeling and delay tissue healing, thereby

heightening the risk of postoperative complications in dental

interventions.6,7 Despite growing awareness of these chal-

lenges, the underlying biological mechanisms of oral aging

remain poorly understood. Addressing this knowledge gap is

essential for developing effective, targeted strategies to

improve oral health and functional outcomes in older adults.

Animal models that replicate aging processes have become

indispensable tools in preclinical research, offering valuable

insights into the pathophysiology of age-related oral condi-

tions and potential therapeutic approaches.8—10 Broadly, an

aging model could be divided into natural aging models and

accelerated aging models. Traditional models typically rely on

naturally aged animals, however, these models are time-

consuming, costly, and subject to considerable individual

variability. In contrast, the acceleratedaging models are more

preferred due to offering distinct advantages by replicating

key aging phenotypes within a shorter timeframe and under

more reproducible conditions.11,12 Commonly used artificially

induced senescence models include D-galactose (D-gal)

admistration,12 senescence-accelerated mouse/prone

(SAMP) strain,11 genetic manipulation, such as Klotho-

deficient mice,13 PolgA mutation mice,11 lamin A (LMNA) mu-

tation model,14 Ercc1 Δ/- mice,15 ZMPSTE24 deficiency,16

Rps9D95N mutation mice.17,18 Other approaches involve

exposure to external stressors, including radiotherapy and

chemotherapy induced,11 thymectomy,12 circadian rhythm

disruption,11 and air pollution exposure (Fig. 1).19,20 These

models have been widely employed in research on neuro-

degeneration,21 musculoskeletal deterioration,22 cardiovas-

cular dysfunction,23 and progeroid syndromes,14,18

demonstrating strong translational potential across multiple

organ systems. However, their application within oral and

craniofacial research remains limited and insufficiently

explored.

To date, no comprehensive reviews have systematically

addressed the establishment and application of acceler-

ated senescence models within the context of dentistry.

Unlike prior research, which may address aging in dentistry

broadly, this scoping review uniquely focuses on model

establishment, usage characteristics, and application

prospects in the context of accelerated senescence. The

findings aim to inform future investigations, promote

standardisation of models, and advance translational ef-

forts in geriatric oral healthcare.

Materials and methods

Information sources and search strategy

This scoping review was registered in the Open Science

Framework registries (https://osf.io/qu6vj). The

methodological framework of this study was guided by

the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)

statement. A modified PICO(T) strategy (Patient Group or

Animal species, Intervention, Comparison, Outcome mea-

sure, Time) was employed to produce a target question.24

What is the current status of accelerated senescence ani-

mal models and application in dentistry? A comprehensive

literature search was independently conducted by two in-

vestigators using both Medical Subject Headings (MeSH) and

free-text terms. The search was performed across PubMed

and Web of Science databases, covering studies published

from January 2020 to March 2025. The detailed search

strategy is provided in Supplementary 1.

Eligibility criteria

The inclusion criteria were: a) studies using accelerated

senescence animal models and limited to in vivo experiments
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using rodents or mammals, such as rats, mice, rabbits, dogs,

pigs, and sheep, etc. b) research must involve oral-related

tissues, such as periodontal tissue, alveolar bone, dental pulp,

salivary glands, or oral mucosa, etc. c) interventions that

induce dysfunction in oral tissues while incorporating typical

aging biomarkers coherence with hallmarks of aging.25 d)

controls were naturally aging models, not treated models,

animals receiving equal injections of PBS/saline and wild type

(WT) control, etc. e) the key evaluation indicatorsare senes-

cence makers:senescence-associated β-galactosidase (SA-β-

gal), P16, P21, P53, senescence-associated secretory pheno-

type (SASP), assays involving DNA damage, telomere short-

ening, and cell cycle arrest.26,27 f)the duration of the

intervention is limitless, and the search covered all the liter-

ature published internationally at the time of the specified

search.

The exclusion criteria were: a) in vitro experiments,

observations were made on a natural model of aging,

organoids, or the object of study being human. b) accel-

erated senescence model, but in other disciplines. c) in-

terventions capable of inducing dysfunction in oral tissues

but without typical senescence detection indicators. d)

reviews and articles not published in English or without a

full text were excluded.

Article selection and data extraction

The extracted data encompassed various study character-

istics, including methods of inducing aging, fields of

application, animal species, sex and age, treatment in-

terventions, control or comparison groups, modes, routes

and durations of induction, aging biomarkers, senescence

characteristics, involvement of biomaterials, as well as

author and publication year. To facilitate a clearer under-

standing of the current use of accelerated aging animal

models and their application implications in oral science,

these characteristics were systematically synthesized,

organized, and narratively described. The outcomes were

summarised in a manner that highlighted both the specific

findings of each included study and the overarching pat-

terns that emerged across studies. This approach allowed

for a comprehensive overview of the data and offered

valuable insights into current trends, research gaps, and

translational potential of accelerated senescence animal

models in the field of stomatology.

Results

Study selection

The initial electronic search identified 377 articles. After

removing 58 duplicates, the titles and abstracts of the

remaining records were screened, leading to the exclusion

of 177 articles. Furthermore, one additional article was

excluded due to the unavailability of the full text. A further

60 studies were excluded because they did not meet the

eligibility criteria―these included studies involving natu-

rally aged animals, in vitro experiments, human studies, or

research conducted outside the relevant disciplinary scope.

An additional 18 articles were excluded for lacking classical

indicators of aging. Consequently, 29 articles were deemed

eligible for further evaluation (Fig. 2).

Figure 1 Overview of commonly used accelerated senescence animal models.
a Klotho-deficient mice: Mice deficient in the Klotho gene; b PolgA mutation mice: Mice with mitochondrial DNA polymerase gamma

mutation; c LMNA mutation mice: Mice expressing mutant lamin A; d Ercc1 Δ/- mice: DNA repair-deficient mice; e ZMPSTE24

deficiency: Mice with defective lamin A processing; f Rps9 D95N mutation mice: Ribosomal protein mutation model (D-gal: D-

galactose; SAMP: Senescence-accelerated mouse/prone).
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Study characteristics

The preliminary characteristics of these studies could be

categorised into three types of senescence models: chem-

ically induced senescence (CIS),28—40 physical stress-

induced senescence (PSIS),41—47 and genetically based

approach-induced senescence (GBAIS),48—56 based on

different driving factors.57 Among the CIS models, D-gal-

induced aging28—32 and the streptozotocin (STZ)-injection

diabetic animal model34—39 are the most commonly used.

Within the SIS, three articles employed radiation-induced

cell senescence,41—43 while the remaining four were

based on exogenous stimuli.44—47 GBAIS category can be

further divided into gene-modified aging48—52 and sponta-

neous genetic aging.53—56 Moreover, the means of induction

used in twenty-two studies could trigger systemic

aging,28—40,48—56 while seven studies targeted localised

aging, such as specific tissues, organs.41—47

In terms of application, the majority of accelerated

senescence models were used in studies of periodontitis

(41.38 %, 12/29),29,30,34—40,53—56 followed by salivary gland

(SG) dysfunction (27.59 %, 8/29),28,31—33,41—43,49 and or-

thodontic tooth movement (OTM) (6.89 %, 2/29).44,48

Research on topics such as osteoporosis,51 tooth and

mandibular growth,52 tooth extraction,53 tongue carcino-

genesis,50 dental cavity preparation (DCP),45 bone regen-

eration,46 and peri-implantitis,47 each accounted for

3.345 % (1/29) of the studies. Notably, models utilizing

diabetes to induce accelerated senescence represented

37.93 % of the total studies (11/29), including seven using

STZ injection,34—40 and four involving spontaneous mutant

mice.53—56 Furthermore, the most frequently investigated

senescence characteristic in all investigations was cell

cycle arrest, reported in twenty-three studies

(79.31 %).28,31,34,36—54,56 This was followed by secretory

phenotypes (51.72 %),29—31,34—43,47,56 oxidative dam-

age,29,30,32,33,35,43,55 and lysosomal alterations (both

24.14 %).28,42,43,46,48,50,52 Less commonly assessed were

DNA damage (10.34 %),42,43,55 mitochondrial dysfunction

(6.90 %),35,40 proliferation declined,50 and alarmin activa-

tion (both 3.45 %).32 In addition, 75.86 % (22/29) used

mice,28—31,34—40,42,43,48—56 20.69 % (6/29) used rats, and

3.45 % (1/29) used mini-pigs as subjects (Fig. 3, Table 1).41

Accelerated senescence models and principal

application in dentistry

Chemically induced senescence (CIS)model

Chemical factors, including inorganic substances, organic

compounds, and functional agents such as cytotoxic drugs

used in chemotherapy, have been recognized to induce

cellular senescence through various pathways, such as

causing irreparable DNA damage, oxidative stress, and

telomerase downregulation.58,59 Studies reviewing the

in vivo adoption of animal models of accelerated senes-

cence in dentistry have used two main instruments: D-gal-

induced aging and STZ-induced aging (Fig. 4).

The D-gal-induced aging, systemic administration of D-gal

has been widely used to artificially induce aging in various

research fields, including studies on cardiovascular

dysfunction,23 cognitive impairment,60 and ovarian aging.61

At elevated concentrations, D-gal can be catalyzed by

galactose oxidase into aldose and hydroperoxide, resulting in

Figure 2 Search flowchart.
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the excessive generation of reactive oxygen species (ROS).

This increase in ROS subsequently triggers oxidative stress,

inflammation, mitochondrial dysfunction, and apoptosis.12

This preclinical aging model was employed in six of the

studies investigated, mainly for periodontitis and SG

dysfunction. In the modeling methodology, protocols

involved intraperitoneal (i.p.) injections of D-gal at doses

ranging from 100 to 500 mg/kg/d, with continuous adminis-

tration cycles lasting from 42 days to 13 weeks. Senescence

indicators used in this model have mainly focused on cell

cycle arrest, secretory phenotypes and oxidative damage.

Concretely, the superoxide dismutase (SOD) activity and

alveolar bone loss were ameliorated in D-gal-induced aging-

periodontitis used baicalin via modulating gut microbiota

and metabolites, as reported by Hu et al.29 In the model of

D-gal-induced SG dysfunction, functional restoration was

achieved through various interventions, including dental

pulp stem cell-derived exosomes (DPSC-exos),28 ganoderma

lucidum polysaccharide (GLP),31 gemigliptin,32 and physical

exercise.33 These approaches improved acinar atrophy and

salivary flow rate, while reducing SA-β-gal activity, inflam-

mation and apoptosis. Interestingly, both GLP and gem-

igliptin were found to promote the expression of aquaporin 5

(AQP5) in two independent studies.31,32

The STZ-induced aging,STZ, a glucosamine-nitrosourea

compound, is commonly used to induce diabetes and

diabetes-related aging in animal models. STZ selectively

targets pancreatic β-cells via the glucose transporter

(GLUT2), causing DNA alkylation and fragmentation, leading

to β-cell death and persistent hyperglycaemia.62 Mechanis-

tically, STZ elevates reactive ROS and advanced glycation

end products (AGEs), which, in turn, activate key senes-

cence pathways such as P53/P21̂Cip1 and P16̂Ink4a/Rb.

Mitochondrial malfunction and endoplasmic reticulum (ER)

stress are also prominent features, contributing to cellular

energy imbalance and apoptotic signaling.63,64 In the studies

reviewed, one combined a high-fat diet (HFD) with STZ in-

jection,40 another utilized STZ administration along with

oral P. gingivalis (P.g.) inoculation,34 while the rest focused

on STZ-induced diabetic periodontitis (DP) to explore the

inflammaging.35—39 The primary choice of injection dose

varied: a small dose (50—60 mg/kg/day) administered

continuously for 3—5 days or a large dose (150 mg/kg/day)

given in a single session. Cell cycle arrest combined secre-

tory phenotypes as core features are almost exclusively

used in such models, and two other studies additionally

assessed mitochondrial dysfunction. Metformin was used as

an intervention in three studies,36—38 and low-level laser

therapy (LLLT) was used in one study,34 both of which

alleviated hyperglycaemia-induced periodontal inflammag-

ing, as assessed by makers such as P21, P16, and SASP.

Furthermore, Fu and Song separately investigated mito-

chondrial function in the STZ-induced inflammaging model

and discovered that NIP3-like protein X (NIX) expression was

decreased, alongside mitochondrial dynamic perturbations

and fission.35,40 Notably, macrophages, as key cells in the

immune microenvironment, have emerged as important

targets for research in this context.34,36—38

Physical stress-induced senescence model

Physical stimuli, referred to as mechanical stress,65 tem-

perature, air pollutants, ultraviolet radiation,66 and radio-

therapy,67 can force cells to enter premature senescence

by inducing increased oxidative stress and/or DNA damage,

thereby activating DNA damage responses (DDR), cell cycle

arrest, and the development of senescence-associated

phenotypes.68,69 Recent models of ageing research using

physical means in the dental field have focused on post-

operative radiotherapy and local stimulation-induced cell

senescence (Fig. 4).

Irradiation-induced aging, exposure to ionizing radiation

(IR) can lead to the accumulation of senescent cells, and

Figure 3 Schema of study characteristics.

D-gal: D-galactose; OTM: Orthodontic tooth movement; SG: Salivary gland; STZ: Streptozotocin.
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Table 1 Overview of the study characteristics.

Model Induction

methods

Application Species/

Sex

Age Treatment

Intervation

Control Method Mode of

delivery

Duration Marker Senescence

characteristics

Biomaterial First

author

(year)

Chemically induced

senescence

model

D-gal SMG

dysfunction

C57BL/6

mice (M)

8w DPSC-exos PBS 150 mg/kg/

d

i.p. 8 wk SA-β-gal,P53, P16,

P21

SASP(IL-1β,TGF-β)

Cell cycle

arrest

Lysosomal

alterations

SMG Zhuo Chen

(2025)

D-gal Aging-PD C57BL/6J

mice(M)

8w Baicalin PBS 500 mg/kg/

d

i.p. 13wk SOD,MDA,IL-6,TNF-

α

Oxidative

damage

Secretory

phenotypes

Alveolar

bone

Huan Hu

(2024)

D-gal Aging-PD C57BL/6J

mice (M)

8w NA PBS 500 mg/kg/

d

i.p. 10wk SOD,MDA,IL-6,TNF-

α

Oxidative

damage

Secretory

phenotypes

Alveolar

bone

Fangzhou

Liu(2024)

D-gal SMG

dysfunction

C57BL/6J

mice (M)

8-

10w

GLP NR 120 mg/kg/

d

NR 42d P21,P16,IL-6, TNF-α Cell cycle

arrest

Secretory

phenotypes

Saliva SMG Mengna

Wu(2023)

D-gal SG dysfunction SD rats

(M)

6w Gemigliptin Normal rats 300 mg/kg/

d

i.p. 4wk ROS, HMGB1 Oxidative

damage

Alarmins

activated

SG Woo Kwon

Jung

(2024)

D-gal SG dysfunction SD rats

(M)

6w Physical

exercise

Young rats 100 mg/kg/

d

i.p. 6wk ROS, 8-OHdG Oxidative

damage

SG Woo Kwon

Jung

(2021)

P.g.-STZ DP C57BL/6J

(M)

9w LLLT Sodium normal saline 55 mg/kg/

d

i.p. 5d P21,P16,SASP Cell cycle

arrest

Secretory

phenotypes

Periodontal

tissue

Aimin Cui

(2024)

STZ DP C57BL/6J

(M)

6-8w NA Vehicle 60 mg/kg/

d

i.p. 5d MitoSOX, MDA,GSH-

Px,SOD,ROS,IL-6,

TNF-α,Drp1,p-Drp1,

ATP level,Mfn2,

COX I

Secretory

phenotypes

Oxidative

damage

Mitochondrial

dysfunction

Gingiva Xinliang Fu

(2023)

STZ DP C57BL/6

mice (M)

5w Metformin Normal saline 150 mg/kg/

d

i.p. Single-

dose

P21,P16,SASP Cell cycle

arrest

Secretory

phenotypes

Gingival

tissue

Ziqi Yue

(2023)

STZ DP C57BL/6

mice (M)

18w Metformin CO, aged mice, yong/

aged mice þ STZ

55 mg/kg/

d

i.p. 5d P21,P16,SASP Cell cycle

arrest

Secretory

phenotypes

Gingival

tissue

Lulingxiao

Nie (2021)

STZ DP C57BL/6J

mice (M)

4w Metformin Aged mice þ STZ, db/

db mice,

normoglycemic

50 mg/kg/

d

i.p. 3d P21,P16,SASP Cell cycle

arrest

Secretory

Gingival

tissue

Qian Wang

(2021)

(continued on next page)
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Table 1 (continued )

Model Induction

methods

Application Species/

Sex

Age Treatment

Intervation

Control Method Mode of

delivery

Duration Marker Senescence

characteristics

Biomaterial First

author

(year)

groups, bacteria-

infected db/db mice

phenotypes

STZ DP C57BL/6

mice (M)

6w NA Sodium 55 mg/kg/

d

i.p. 5d P21,P16,SASP Cell cycle

arrest

Secretory

phenotypes

Gingival

tissue

Peng

Zhang

(2021)

HFD þ STZ DP C57BL/6J

mice

(M)

4w NA CO

PD

DM

HFD: 60 %

kcal fat

HFD:

gavage

HFD: 6w P21, SASP, NIX Cell cycle

arrest

Secretory

phenotypes

Periodontal

tissue

Danni Song

(2024)

STZ:50 mg/

kg/d

STZ: i.

p.

STZ:5d Mitochondrial

dysfunction

Physical atress-

induced

senescence

model

Irradiation SG

hypofunction

Miniature

pigs (M)

8 mo Transient

Hedgehog

activation

NT 20 Gy IGRT Single-

dose

P53, SASP Cell cycle

arrest

Secretory

phenotypes

SG Liang Hu

(2021)

Irradiation SG

hypofunction

ICR mice

(F)

7-9w hDPSC-sEV PBS 25 Gy IR Single-

dose

P16INK4a, P19Arf,

P21, SASP,p-H2A.X,

SA-β-gal

Cell cycle

arrest

Secretory

phenotypes

Lysosomal

alterations

DNA damage

SMG Jiao Dong

(2021)

Irradiation SG

hypofunction

C57BL/6

mice (NR)

NR S1P NT

Vehicle

S1P

IR

15 Gy IR Single-

dose

P53,SA-β-gal, p-

H2A.X,Nox4,Sod2,

Nrf2

Cell cycle

arrest

Secretory

phenotypes

Lysosomal

alterations

DNA damage

Oxidative

damage

SMG Tao Yang

(2022)

Mechanical

stress

OTM SD rats

(M)

15w Senolytics NT 5 N L-loop 14d P21,P16 Cell cycle

arrest

Molar roots Yue Zhou

(2023)

Mechanical

stress

DCP SD rats

(M)

8w Senolytics No DCP NA Drilling NA P21,P16 Cell cycle

arrest

Molar Haitao LIU

(2023)

β-TCP

granules

CSBD SD rats(M) 8w Senolytics No implant β-TCP

granules

Implant 4wk SA-β-gal,P21,P19 Cell cycle

arrest

Lysosomal

alterations

Calvaria Xinchen

Wang

(2021)

Mini-

implant þ GR

Peri-

implantitis

SD rats(M) 8w Senolytics Implant GR Implant 24d P19,P21,P16, SASP Cell cycle

arrest

Secretory

phenotypes

Peri-implant

tissue

Niuxin

Yang

(2023)
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Genetically

modified aging

Prx1-KOþ

4NQO

Tongue

carcinogenesis

model

C57BL/6

mice (NR)

6—8

w

NA WT 50 μg/mL Gavage 16 wk P53,P21, Ki67,SA-β-

gal,CDK2,CDK4,

CDK6

Cell cycle

arrest

Cell

proliferation

declined

Lysosomal

alterations

Touge Yunping Lu

(2021)

BDNF-KO OTM C57BL/6J

mice (M)

8w Exogenous

BDNF

WT mice NA NA NA P16,P53,SA-β-gal Cell cycle

arrest

Lysosomal

alterations

Periodontal

ligament

Lingxiao

Meng

(2023)

Smad7-KO SMG

dysfunction

CD-1 (ICR)

mice (NR)

NR NA WT mice NA NA NA P65 Cell cycle

arrest

Saliva SMG Minqi Hu

(2021)

Bmi 1-KO Mandible

osteoporosis

P16Ink4a

þ/� mice

(NR)

5w AMSCs WT mice NA NA NA P16,P21,P53,SA-β-

gal

Cell cycle

arrest

Lysosomal

alterations

Mandible YingYin

(2022)

Bmi 1-KO Tooth and

mandible

growth

retardation

C57Bl/6J

mice (NR)

4w NA WT mice, P16�/�,

Bmi1�/� P16�/�

NA NA NA P27,P53,CDK4 Cell cycle

arrest

Mandible YingYin

(2020)

Spontaneous

genetic aging

Selective

breeding DM

T2DM-tooth

extraction

GK rats

(M)

6w NA Wistar rats NA NA NA P21, P16 Cell cycle

arrest

Epithelial,

connective

tissues of

extraction

sockets

Chuyi LUO

(2024)

Lepr̂db/db

mutant mice

DM

DP BKS-db/

db mice

(M)

4w Metformin BKS mice NA NA NA P21, P53 Cell cycle

arrest

JE Xiaoyuan

Ye (2024)

Lepr̂db/db

mutant mice

DM

DP db/db

mice(M)

8w NA WT NA NA NA TRF2,53BP1,8-

OHdG,MDA, GSH-

Px, SOD

DNA damage

Oxidative

damage

Periodontal

ligament

Lu Tang

(2022)

P.g.-infected

db/db mice

DP db/db

mice(M)

4w 25(OH)D3 WT NA NA NA P21,P16,SASP Cell cycle

arrest

Secretory

phenotypes

Gingiva

tissue

Qian Wang

(2020)

25(OH)D3: 25-Hydroxyvitamin D3; 4NQO: 4-nitro-quinoline-1-oxide; 53BP1: P53-binding protein 1; 8-OHdG: 8-hydroxy-2’-deoxyguanosine; AMSCs: Amniotic membrane mesenchymal stem

cells; BDNF: Brain-derived neurotrophic factor; BKS-db/db: C57BLKS/J-leprdb/leprdb; CDK2: Cyclin-dependent kinase 2; CDK4: Cyclin-dependent kinase 4; CDK6: Cyclin-dependent kinase

6; CO: Healthy control; COX I: Cyclooxygenase I; CSBD: Critical-sized bone defects; D-gal: D-galactose; DCP: Dental cavity preparation; DM: Diabetes mellitus; DP: Diabetic periodontitis;

DPSC-exos: Dental pulp stem cell-derived exosomes; F:Female; GK: Goto-Kakizaki; GLP: Ganoderma lucidum polysaccharide; GR: Gum ring; GSH-Px: Glutathione peroxidase; HFD: High-fat

diet; HMGB1: High-mobility group box 1; hDPSC-sEV: human dental pulp stem cell-derived small extracellular vesicles; ICR: Institute of cancer research; IGRT: Image-guided radiation

therapy technology; IL-6: Interleukin-6; i.p.: Intraperitoneal injections; IR: Irradiation; JE: Junctional epithelium; KO: Knockdown; LLLT: Low-level laser therapy; M: Male; MDA:

Malondialdehyde; MitoSOX: Red mitochondrial superoxide indicator; NA: Not applicable; NIX: NIP3-like protein; Nox4: NAPDH oxidase 4; NR: Not reported; NT: No-treated; OTM: Or-

thodontic tooth movement; P.g.: Porphyromonas gingivalis; PBS: Phosphate-buffered saline; PD: Periodontitis; p-Drp1: phospho-Drp1; Prx1: Peroxiredoxin1; ROS: Reactive oxygen species;

SA-β-gal: Senescence-associated beta-galactosidase; SASP: Senescence-associated secretory phenotype; SD: Sprague—Dawley; SG: Salivary gland; S1P: Sphingosine-1-phosphate; SMG:

Submandibular gland; SOD: Superoxide dismutase; Sod2: Superoxide dismutase 2; STZ: Streptozotocin; T2DM: Type 2 diabetes mellitus; TNF-α: Tumor necrosis factor-α; Trans: Transgenic;

TRF2: Telomeric Repeat-binding Factor 2; WT: Wild type; γ-H2AX: Phosphorylated Histone H2AX; d: day; mo: months; wk: week.
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this effect is dose-dependent.70 Three studies have focused

on salivary gland (SG) hypoplasia caused by radiotherapy

for head and neck cancer, each establishing models of

irradiation-induced senescence using species of different

strain backgrounds. All three studies employed a single

radiation dose between 15 and 25 Gy, targeted at the mid-

neck region.41—43 The senescence characteristics of cell

cycle arrest, secretory phenotypes, lysosomal alterations

and DNA damage have been observed. Hu et al. demon-

strated that transient activation of Hedgehog signaling

restored the functionality of irradiated SGs by promoting

the recovery of resident macrophages, thereby reducing

cellular senescence and inflammation.41 Another group re-

ported that pretreatment with sphingosine-1-phosphate

(S1P) improved irradiation-induced salivary dysfunction in

mice through activation of the S1pr1/Akt/eNOS pathway

and decreased oxidative stress and DNA damage.43 In

addition, the use of small extracellular vesicles derived

from human dental pulp stem cells (hDPSC-sEV) was iden-

tified as a promising strategy to mitigate cellular senes-

cence, specifically in a number of phosphorylated histone

H2AX (p-H2A.X) and SA-β-gal, in this model.42

External local stimuli-induced aging, exogenous local

irritation, resulting from the specific clinical procedures

performed in the oral cavity, can contribute to the devel-

opment of cellular senescence with cell cycle blockade as

the main feature. For example, in an orthodontic tooth

movement (OTM) model involving intrusion, mechanical

stress can induce senescent cells, thereby exacerbating

apical root resorption.44 Similarly, the formation of senes-

cent cells following dental cavity preparation (DCP) may

impair reparative dentin formation.45 The implantation of

beta-tricalcium phosphate (β-TCP) into bone defects has

been shown to impair the function of surrounding tissues by

promoting P21, P19 and SA-β-gal.46 Additionally, a peri-

implantitis model has demonstrated the induction of P21,

P16 and SASP in the adjacent tissues.47 Notably, the accu-

mulation of these stress-induced senescent cells could be

mitigated by the application of senolytic therapies.

Genetic-based approaches induced senescence (GBAIS)

model

In addition to physical and chemical factors, genetic

manipulation represents another primary approach for

inducing accelerated aging. Generally, it can be classified

into genetically modified and spontaneous genetic aging

(Fig. 4).

Genetically modified aging, recent advancements in

genome-editing technologies, particularly the highly effi-

cient CRISPR/Cas system, have revolutionized genetic en-

gineering, enabling it to be applied across a wide range of

species. Models targeting key regulators such as P16̂Ink4a,

Figure 4 Accelerated senescence models and principal application in dentistry.

25(OH)D3: 25-Hydroxyvitamin D3; BDNF: Brain-derived neurotrophic factor; CIS: Chemically induced senescence; D-gal: D-galac-

tose; DCP: Dental cavity preparation; DP: Diabetic periodontitis; GBAIS: Genetic-based approaches induced senescence; HMGB1:

High-mobility group box 1; Ki67: Proliferation marker protein Ki-67; LLLT: Low-level laser therapy; MDA: Malondialdehyde; MSCs:

Membrane mesenchymal stem cells; OTM: Orthodontic tooth movement; PD: Periodontitis; PSIS: Physical stress-induced senes-

cence; ROS: Reactive oxygen species; S1P: Sphingosine-1-phosphate; SA-β-gal: Senescence-associated beta-galactosidase; SASP:

Senescence-associated secretory phenotype; SG: Salivary gland; SOD: Superoxide dismutase; STZ: Streptozotocin; γ-H2AX: Phos-

phorylated Histone H2AX.
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P21, sirtuins (SIRT family proteins), mTOR, and components

of the inflammatory and DNA damage response pathways

have provided insights into mechanisms of cellular sen-

escence.71—73 Throughout these studies that have used

genetically engineered models in dentistry, cell cycle arrest

and lysosomal alterations arose as key markers. The brain-

derived neurotrophic factor (BDNF) heterozygous (BDNFþ/

�) mice strain in periodontal ligament, peroxiredoxin1

(Prx1) haploinsufficiency (Prx1þ/�) in mice suppressed 4-

nitro-quinoline-1-oxide (4NQO) induced tongue carcino-

genesis and Smad7 knockout in mice submandibular glands

(SMG) aggravated the senescence phenotype compared to

wild type (WT) mice.48,49 Furthermore, a group demon-

strated that Bmi-1-deficient mice developed mandibular

osteoporosis, which was associated with the upregulation

of P16, P21, and P53; notably, this phenotype could be

rescued by treatment with amniotic membrane-derived

mesenchymal stem cells (AMSCs).51,52

Spontaneous genetic aging, in dentistry-related studies,

spontaneous models such as Goto-Kakizaki (GK) rats and

db/db mice, derived from selective breeding or natural

mutation respectively, have been used to study aging-

related changes in oral tissues under diabetic conditions.

GK rats are a non-obese, spontaneously diabetic model

derived from Wistar rats, characterized by peripheral in-

sulin resistance, pancreatic β-cell dysfunction, and chronic

inflammation, making it valuable for studying the patho-

physiology and treatment of type 2 diabetes mellitus

(T2DM). In contrast, db/db mice carry a spontaneous

recessive mutation in the Lepr gene, which encodes the

leptin receptor. This mutation results in defective leptin

signaling, leading to severe obesity, hyperphagia, insulin

resistance, and early-onset T2DM.62,74 In these studies, the

expression of cellular senescence markers such as

P16̂Ink4a, P21, and P53, which represent cell cycle

disruption, is consistently elevated in periodontal liga-

ment,55 gingival tissues,56 junctional epithelium (JE),54 or

extraction sockets,53 indicating accelerated tissue senes-

cence. Some studies also assessed oxidative stress and DNA

damage markers to further elucidate aging mechanisms.55

Interventions such as metformin and 25-Hydroxyvitamin D3

(25(OH)D3)supplementation have been explored for their

potential to ameliorate senescence phenotypes.54,56

Discussion

The present scoping review provides a comprehensive

overview of accelerated senescence animal models and

their recent applications in dental research. Our findings

reveal a growing interest in using chemically induced,

physically induced, and genetically based models to simu-

late aging-related alterations in the oral environment.

Among these, periodontitis and SG dysfunction emerged as

the most frequently studied diseases.

In the research on periodontitis-related aging, two main

categories of senescence models have been commonly

employed. One type involves the use of D-gal induced

models, which simulate systemic aging by promoting

oxidative stress and cellular senescence.29,30 The other

relies on inflammation-driven aging associated with dia-

betic periodontitis, utilizing STZ-induced or spontaneous

mutation models to replicate chronic inflammatory and

metabolic conditions that accelerate periodontal degener-

ation.34—40,53—56 Therapeutic strategies explored in these

models, modulating gut microbiota and its metabolites may

hold promise for improving senile periodontitis. Addition-

ally, evidence indicates that systemic metformin therapy

and local interventions like LLLT, both of which mitigate

periodontal inflammation through senescence modulation,

may offer an effective integrated avenue for managing

diabetic periodontitis. In addition to the above-mentioned

models that induce accelerated aging phenotypes,

emerging genetic tools have enabled more precise in-

vestigations into the role of senescent cells in periodontal

disease. For instance, the P16-3 MR transgenic mouse

model allows selective labeling and clearance of P16̂Ink4a-

positive senescent cells. Using this model, Chu et al.

demonstrated that targeted ablation of senescent cells

significantly attenuated periodontitis progression, thereby

providing direct evidence for the pathogenic role of cellular

senescence in periodontal tissue degeneration.75

Another extensively studied condition is SG dysfunction,

D-gal administration and radiation-induced was modeled.

Among various disease models, this condition has been

associated with the most extensive application of aging

hallmarks for identifying senescent cells, involving cell cyst

disruption, secretory phenotypes, endogenous proteins

alarmin, oxidative damage, lysosomal alterations and DNA

damage. Available evidence suggests systemic or bioactive

interventions may ameliorate age-related glandular hypo-

function by increasing salivary flow rate and attenuating

aging phenotype.28,31—33 Approaches targeting signaling

pathways, immune cell recovery, and extracellular vesicle

communication have shown promise in reducing senes-

cence, inflammation and DNA damage in radiation-induced

models, which simulate SG impairment commonly observed

in head and neck cancer therapy.41—43 Furthmore, resent

studies have employed organoid-based models to explore

SG hypofunction caused by irradiation-induced aging.76,77

These tissue-engineered platforms offer a novel and ethi-

cally favorable alternative for studying organ aging by

recapitulating complex architecture and function in vitro,

thereby reducing the need for animal use and enabling

scalable mechanistic and therapeutic investigations.78

Meanwhile, several accelerated senescence animal

models have been developed through genetic manipulation

targeting bone-related regulatory pathways, offering valu-

able insights into age-associated skeletal changes.48,51,52

Nonetheless, the application of these models in oral and

craniofacial research remains limited. Broader, evidence-

based studies across diverse senescence models are

needed to validate and generalize existing findings.

Notably, genetic models such as SAMP6 mice,79 Klotho-

deficient mice,80 and ZMPSTE24-deficient mice,81 which

are well-established in systemic aging and bone metabolism

research, exhibit features theoretically suitable for inves-

tigating age-related changes in dental implant osseointe-

gration, orthodontic tooth movement, and periodontal

tissue remodeling.

Furthermore, we identified emerging evidence that

exogenous factors introduced during routine oral clinical

procedures may trigger localized cellular senescence in

surrounding tissues.44—47 The application of senolytic
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agents may rescue these senescent environments and

restore regenerative potential. These findings highlight the

need to consider procedure-related senescence as a pre-

viously underrecognized contributor to impaired healing or

compromised therapeutic outcomes. They also point to new

avenues for senescence-targeted interventions to enhance

regenerative capacity and long-term success in oral treat-

ments, particularly in aging or compromised patients.

Despite their widespread use, current aging models

present notable limitations. The D-gal-induced aging

model, while convenient, lacks tissue specificity, and the

absence of localized periodontal assessments restricts ac-

curate interpretation of aging-related changes in oral tis-

sues. Conversely, accelerated aging models based on

mimicking T2DM-related periodontitis may introduce con-

founding variables related to glucose metabolism and in-

sulin resistance. Furthermore, although various

senescence-associated phenotypes have been investi-

gated, most commonly cell cycle arrest using a range of

biomarkers tailored to specific models, many studies relied

on a single biomarker, potentially resulting in biased or

incomplete identification of senescent cells. In addition,

valuable in situ senescence indicators,27 including cellular

senescence, such as nuclear envelope erosion, deconden-

sation of centromeric satellite DNA, accumulation of lipid

droplets, and lipid peroxidation products like 4-

hydroxynonenal (4-HNE), were not addressed in the litera-

ture reviewed. Simultaneously, although various therapeu-

tic approaches such as stem cell-derived exosomes,

hyperglycemia management, and senolytic agents have

been employed, the heterogeneity among models pre-

cludes definitive conclusions.

This scoping review highlights the increasing use of

accelerated senescence animal models in dental research,

particularly in studies focusing on periodontitis, salivary

gland dysfunction, and diabetes-related oral aging. These

models, induced through chemical, physical, or genetic

approaches, can replicate both systemic and localized

aging phenotypes. Cell cycle arrest and or secretory phe-

notypes were mainly senescence characteristics employed.

However, the current studies reviewed only two databases

published within the past five years. The analysis was

challenged by considerable heterogeneity in animal spe-

cies, senescence induction methods, and outcomes,

alongside generally small sample sizes. This variability

limits direct comparison, broader generalization, and the

development of standardized protocols. Future research

should prioritize the optimization and selection of appro-

priate models tailored to specific research objectives in

dentistry, incorporating emerging hallmarks of aging and

insights from aging models in other biomedical fields.

Refinement and broader application of these models will be

essential for advancing precision geriatric oral healthcare

and for the development of targeted anti-aging in-

terventions in dentistry.
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