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Abstract Background/purpose: Oral submucous fibrosis (OSF) is an irreversible fibrotic disor-

der of the oral cavity with a high potential for malignant transformation. MicroRNA lethal-7a

(let-7a) has been recognized as a key antifibrotic regulator, but its specific role in OSF remains

unknown. Therefore, this study aimed to elucidate the functional significance and the molec-

ular mechanism of let-7a in OSF progression.

Materials and methods: The expression of let-7a was quantified by real-time quantitative po-

lymerase chain reaction in fibrotic buccal mucosal fibroblasts (fBMFs) isolated from OSF lesions

and patient—matched non-fibrotic BMFs (BMFs). Myofibroblastic characteristics were evaluated

using collagen-gel contraction, Transwell migration, and wound-healing assays. Restoration

and inhibition of let-7a expression were achieved by transfecting let-7a mimics or inhibitors,

respectively. Direct binding of let-7a to high-mobility group AT-hook 2 (HMGA2) mRNA was veri-

fied using luciferase reporter assay.

Results: Let-7a expression was significantly down-regulated in fBMFs isolated from OSF lesions

compared with patient—matched non-fibrotic BMFs. Moreover, let-7a expression declined in a

dose—dependent manner during arecoline—induced myofibroblastic transdifferentiation of
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BMFs. Myofibroblastic characteristics, including cell contractility, cell migration, and wound-

healing capacity were significantly decreased in fBMFs after transfection of let-7a mimics.

Mechanistically, let-7a directly targeted the HMGA2 mRNA, leading to post-transcriptional

repression of HMGA2. Importantly, silencing of HMGA2 was sufficient to diminish cell contrac-

tility and myofibroblasts marker expression in fBMFs.

Conclusion: The present study demonstrates that let-7a suppresses oral myofibroblast activa-

tion by directly targeting HMGA2. This finding first establishes the let-7a/HMGA2 axis as a

promising therapeutic target for mitigating the progression of OSF.

© 2025 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Introduction

Oral submucous fibrosis (OSF) is a chronic and progressive

fibrotic disorder of the oral mucosa characterized by

persistent inflammation, excessive collagen deposition, and

consequent mucosal stiffening that ultimately restricts

mouth opening.1,2 Oral submucous fibrosis disproportion-

ately affects East and Southeast Asian populations, where

betel-quid chewing is culturally entrenched.1,2 In Taiwan, a

17-year epidemiological survey showed the prevalence of

OSF rising from 8.3 % to 16.2 %.3 Moreover, a meta-analysis

has estimated that 4.2 % of OSF cases undergo malignant

transformation to oral cancer,4 indicating OSF as an oral

potentially malignant disorder (OPMD). These data

emphasize the ongoing clinical challenge despite medical

advances.

Arecoline, the major alkaloid in areca nuts, can drive

the myofibroblastic transdifferentiation of oral fibroblasts

by activating various pro-fibrogenic mechanism such as the

transforming growth factor (TGF)-β1/Smad2 signaling

pathway. Myofibroblasts are recognized as key contributors

in fibrotic diseases through overproduction of extracellular

matrix (ECM) components and elevated ECM contractility,

thereby promoting the formation of fibrotic bundles and

perpetuating OSF progression. Indeed, α-smooth muscle

actin (α-SMA), a key myofibroblast marker, has been found

to be predominantly expressed in the lamina propria of

fibrotic mucosa in OSF patients, rather than in areas of

fibroepithelial hyperplasia,5 and it has been confirmed that

the expression intensity of α-SMA significantly increased

with disease progression.6,7 Hence, targeting myofibroblast

activation is considered a promising strategy for mitigating

OSF.

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs)

of approximately 22 nucleotides that suppress gene

expression at post-transcriptional level by binding to com-

plementary seed-sequence within the 3 prime untranslated

region (30-UTR) of their specific targets.8 The lethal-7 (let-

7) family, first described in Caenorhabditis elegans, par-

ticipates in diverse biological processes, including immune

modulation,9 carcinogenesis,10 neurodegeneration,11 and

fibrogenesis.12—15 Previous studies of diabetic nephropathy

have shown that advanced glycation end-products mark-

edly suppressed let-7a in mesangial cells, which in turn

activated a myeloid differentiation primary response

(MyD)-88—dependent inflammatory cascade and pro-

fibrogenic phenotype changes.14 Likewise, a study of

ischemia—induced atrial fibrosis demonstrated that let-7a

was reduced in cardiomyocytes under hypoxic condition,

thereby relieving the repression of type I collagen A1

(COL1A1) and COL3A1 and promoting collagen excessive

production.15 Notably, let-7a has also been reported to

govern the physiological and pathological processes in oral

tissues. For instance, let-7a fostered the osteogenic dif-

ferentiation of bone-marrow mesenchymal stem cells

(BMSCs) to support the periodontal bone regeneration,16

whereas its down-regulation increased tumour—initiating

capacity in oral squamous cell carcinoma (OSCC) cells.17

Despite these observations, the specific role of let-7a in

regulating the OSF progression remains unclear.

The present study confirmed the significantly diminished

expression of let-7a in primary fBMFs, as well as in

arecoline-induced myofibroblastic differentiation of non-

fibrotic BMFs. We further elucidated that let-7a exerted its

inhibitory effects on myofibroblast characteristics by

directly targeting the high mobility group AT-hook 2

(HMGA2). Our findings delineated a critical let-7a/HMGA2

regulatory axis in the pathogenesis of oral fibrogenesis.

Through this work, we provided preclinical evidence sup-

porting the potential of targeting the let-7a/HMGA2 axis as

a novel approach against OSF.

Materials and methods

Tissue specimen collection and primary culture

The study adhered to the principles of the Declaration of

Helsinki and was approved by the Institutional Review

Board of Chung Shan Medical University Hospital. Written

informed consent was obtained from all participants before

biopsy. Paired specimens of non-fibrotic buccal mucosa and

fibrotic bands were collected from five clinically and his-

tologically confirmed OSF patients. Each specimen was

transferred on ice in Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 1 % penicillin—streptomycin

cocktail and either processed immediately or stored at

�80 �C until use. Buccal samples were minced into frag-

ments (<1 mm3) and digested with 0.05 % trypsin—EDTA for

30 min at 37 �C. After centrifugation, the tissue pellet was
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plated into T-25 culture flasks and cultured for 10 days in

DMEM containing 10 % fetal bovine serum (FBS), 1 %

penicillin—streptomycin cocktail, and 2 mM L-glutamine.

Spindle—shaped cells migrating from the explants were

regarded as fibroblasts and subcultured once 70—80 %

confluence had been reached. Fibroblasts obtained from

non-fibrotic tissue were identified as buccal mucosal fi-

broblasts (BMFs). Fibrotic BMFs (fBMFs) were obtained from

fibrotic bands and subsequently confirmed to exhibit higher

expression of myofibroblast markers (α-SMA and COL1A1),

as well as to display enhanced collagen-gel contractility.

Primary cultures at passages 3—8 was used for all subse-

quent experiments. A 10 mg/mL stock solution of arecoline

hydrobromide (Sigma—Aldrich, St. Louis, MO, USA) was

freshly prepared in phosphate buffered saline (PBS),

sterile—filtered through a 0.22 μm membrane, and stored

at �20 �C. To induce myofibroblastic transdifferentiation,

BMFs were exposed in DMEM containing arecoline at final

concentrations of 0, 5, 10, or 20 μg/mL for 48 h. Unless

otherwise stated, all reagents were obtained from Gibco

(Thermo Fisher Scientific, Waltham, MA, USA).

Real-time quantitative polymerase chain reaction

Total RNA, including the small RNA fraction, was isolated

with the mirVana™ PARIS kit (Invitrogen, Thermo Fisher

Scientific) in accordance with the manufacturer’s in-

structions. For miRNA analysis, 10 ng of RNA was reverse-

transcribed using the TaqMan™ MicroRNA Reverse Tran-

scription Kit (Applied Biosystems, Thermo Fisher Scientific)

together with the assay—specific stem-loop primer. For

mRNA analysis, 1 μg of RNA was reverse-transcribed with

the SuperScript™ III First-Strand Synthesis System (Invi-

trogen) and random hexamers. Real-time quantitative po-

lymerase chain reaction (RT—qPCR) was performed on a

7900HT Fast Real-Time PCR System (Applied Biosystems)

using TaqMan™ MicroRNA Assays (Applied Biosystems) for

miRNA reactions and PowerUp™ SYBR Green Master Mix

(Applied Biosystems) for mRNA reactions. The specific

primers are listed: HMGA2 forward 50-TCCCTCTAAAG-

CAGCTCAAAA-30, reverse 50-ACTTGTTGTGGCCATTTCCT-3’;

GAPDH forward 50-CTCATGACCACAGTCCATGC-30, reverse

50-TTCAGCTCTGGGATGACCTT-3’. Relative gene expression

levels were calculated using the 2�ΔCt method.

Let-7a overexpression and inhibition

Cells were transfected with let-7a mimics, let-7a inhibitor,

or equal concentrations of scrambled non-targeting con-

trols (miR-Scr., Applied Biosystems) using Lipofectamine

2000 (Invitrogen). Transfection efficiency was confirmed

with Cy3—labeled control oligos (Applied Biosystems).

Western blotting analysis

Whole cell lysates were prepared in RIPA buffer (Millipore,

Merck, Darmstadt, Germany) with protease/phosphatase

inhibitors cocktail (Roche, Basel, Switzerland). Protein

concentration was determined using Bradford assay (Bio-

Rad Laboratories, Hercules, CA, USA). Twenty μg of protein

per lane was separated on 10 % SDS-PAGE,

electrotransferred to PVDF membranes (0.45 μm; Milli-

pore), and blocked with 5 % bovine serum albumin (Sig-

ma—Aldrich) for 1 h at room temperature. Membranes were

incubated overnight at 4 �C with primary antibodies

including anti-α-SMA (Novus Biologicals, Centennial, CO,

USA), anti-HMGA2 (Abcam, Cambridge, UK), anti-GAPDH

(Invitrogen). After washing, HRP-conjugated secondary

antibodies (Millipore) were applied for 1 h at room tem-

perature. Chemiluminescent bands were developed using

an enhanced chemiluminescence substrate (T-Pro Biotech-

nology, Taipei, Taiwan) and visualized using the LAS-4000

mini analyzer (GE Healthcare, Chicago, IL, USA). Densito-

metric analysis was performed in ImageJ software (National

Institutes of Health, Bethesda, MD, USA).

Collagen-gel contraction assay

A 500 μL collagen-cell mixture containing 750 μg neutral-

ized type I collagen (Sigma—Aldrich) with 2.5 � 105 cells

was added in 24-well plates and allowed to polymerize for

30 min at 37 �C/5 % CO2. The gels were gently detached and

incubated in medium for an additional 48 h. Gel areas were

photographed under an inverted microscope and quantified

with ImageJ (National Institutes of Health). Gel contraction

(%) was calculated as [(initial area � final area)/initial

area] � 100.

Wound-healing assay

Confluent monolayers cultured in 6-well plates were linear-

scratched with a 200 μL pipette tip. Detached cells were

removed by rinsing twice with PBS, and cell images were

captured at 0 and 48 h under an inverted microscope.

Luciferase reporter assays

The wild-type (wt) HMGA2 30-UTR and a mutant (mut)

version carrying an 8-nt substitution in the let-7a seed re-

gion were PCR-amplified and cloned downstream of firefly

luciferase in pmirGLO (Promega, Madison, WI, USA). Cells

were co-transfected with luciferase reporter and let-7a

mimics or miR-Scr using Lipofectamine 2000 (Invitrogen).

After 48 h of incubation at 37 �C/5 % CO2, firefly and Renilla

luciferase activities were measured using on an Infinite 200

PRO reader (Tecan, Männedorf, Switzerland).

Transwell migration

A total of 1 � 105 cells suspended in 200 μL serum-free

medium was added into 8-μm Transwell inserts (Corning,

Corning, NY, USA). The lower chambers were filled with

600 μL medium containing 10 % FBS, which served as the

chemoattractant. After 48 h of incubation at 37 �C/5 % CO2,

non-migrated cells on the upper surface of each insert were

removed with cotton swabs. The migrated cells on the

underside were fixed with 4 % paraformaldehyde e and

stained with 0.1 % crystal violet. Crystal-violet bound to

migrated cells was eluted in 10 % acetic acid, and absor-

bance was measured at 590 nm using an Infinite 200 PRO

reader (Tecan). Relative migration ability of each test was
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expressed as a percentage of the group of fBMFs trans-

fected with miR-Scr.

Lentivirus-mediated knockdown of HMGA2

The pLV-RNAi lentiviral vector encoding short-hairpin target-

ing HMGA2 (Sh-HMGA2) or a non-targeting luciferase control

(Sh-Luc) were obtained from BioSettia (San Diego, CA, USA).

Lentiviral particles were produced in 293T cells by co-

transfecting the pLV-RNAi construct with packaging and en-

velope plasmids. Viral supernatants were harvested and

concentrated by ultracentrifugation. Fibrotic BMFs were

infected with in polybrene and selected with puromycin for 5

days. Knockdown efficiency was verified by RT—qPCR. The

specific sequences of Sh-HMGA2 listed as follows: Sh-HMGA2-

1: 50-AAAAGCAGGAACTCAGAAAACTTTTGGATCCAAAAGTTTT

CTGAGTTCCTGC-3’; Sh-HMGA2-2: 50-AAAAGGGACACAATT

CACTCCAATTGGATCCAATTGGAGTGAATTGTGTCCC-3’.

Statistical analysis

Results are expressed as mean � standard deviation (SD).

Differences between two groups were analyzed with paired

or two-sample two-tailed Student t-tests. For comparisons

involving more than two groups, a one-way ANOVA followed

by Tukey honest significant difference post-hoc testing was

applied. Values of P < 0.05 were considered statistically

significant. All analyses were performed with GraphPad

Prism 10 (GraphPad Software, Boston, MA, USA).

Results

To determine whether let-7a functions as an anti-fibrotic

miRNA in OSF, we first compared its expression levels in

primary buccal mucosal fibroblasts derived from non-

fibrotic tissue (BMFs) with the patient-paired fibrotic BMFs

(fBMFs). Real time qPCR revealed a significant decrease in

let-7a across all five patient pairs (Fig. 1A). We next ask

whether the myofibroblastic transdifferentiation of BMFs

requires let-7a downregulation. Primary BMFs from two OSF

patients were exposed to 0—20 μg/mL arecoline for 48 h

(Fig. 1B). Let-7a levels declined in a dose-dependent

manner, with significant reductions at 10 and 20 μg/mL

(Fig. 1B).

To investigate whether restoring let-7a reverses the

myofibroblastic characteristics, the synthetic let-7a mimics

were transfected into two independent fBMFs (Fig. 2A). As

measured by cellular function assays, the collagen-gel

contractility (Fig. B), cell motility (Fig. C), and wound-

healing ability (Fig. D) of fBMFs were significantly reduced

by let-7a mimics.

To determine the specific anti-fibrotic role of let-7a in

fBMFs and BMFs during the myofibroblast trans-

differentiation, we searched for direct targets of let-7a.

Bioinformatic analysis identified a conserved let-7a seed

site within the 30-UTR of HMGA2 mRNA (Fig. 3A) and the

direct binding between let-7a and HMGA2 30-UTR in fBMFs

was verified using luciferase reporter assays (Fig. 3B).

Overexpressing let-7a by let-7a mimics transfection was

sufficient to suppress luciferase activity from the wild-type

HMGA2 30-UTR reporters (wt-HMGA2) in fBMFs, whereas

mutation of the let-7a seed site (mut-HMGA2) abolished

this response (Fig. 3B). Consistently, overexpression of let-

7a reduced endogenous HMGA2 protein expression in fBMFs,

while inhibition of let-7a in BMFs by let-7a inhibitors

transfection resulted in an opposite effect on HMGA2

expression (Fig. 3C and D). To examine whether the anti-

fibrotic effect of let-7a was achieved by targeting HMGA2,

we silenced HMGA2 in fBMFs by lentiviral—mediated

expressing Sh-HMGA2. Western blotting analyses showed

that silencing HMGA2 markedly decreased the expression of

α-SMA (a hallmark of myofibroblasts, Fig. 4A) and signifi-

cantly diminished the collagen-gel contractility in fBMFs

(Fig. 4B). Taken together, these findings demonstrate that

HMGA2 is a direct downstream effector of let-7a, and that

dysregulation of this axis is essential for maintaining the

myofibroblastic characteristics in OSF—derived fBMFs.

Discussion

In this study, we found that let-7a were significantly

downregulated in OSF patient—derived fBMFs that exhibit

myofibroblastic characteristics. Further investigation

showed that arecoline stimulation decreased let-7a

expression in primary BMFs in a dose-dependent manner.

Figure 1 Arecoline-stimulation decreased let-7a expression in primary buccal mucosal fibroblasts.

(A) Relative miR-let-7a expression in primary non-fibrotic buccal mucosal fibroblasts (BMFs) and paired fibrotic BMFs (fBMFs) from

five OSF patients was quantified by RT—qPCR. (B) Primary BMFs from two patients (�1; �2) were treated with arecoline (0—20 μg/

mL) for 48 h and analysed as in (A). Data are mean � SD (n � 3). *P < 0.05 vs 0 μg/mL arecoline.
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Figure 2 Ectopic let-7a impaired the myofibroblastic characteristics of primary fibrotic buccal mucosal fibroblasts.

(A) Relative let-7a expression in fBMFs (�1; �2) after transfection with let-7a mimics or scrambled control (miR-Scr.) was quan-

tified by RT—qPCR. (B—C) Relative ECM contractility (B), cell motility (C), and wound-healing ability (D) in fBMFs after transfection

with let-7a mimics or miR-Scr were assessed using collagen-gel contraction assay (B), Transwell migration system (C), and scratch-

wound closure methods (D), respectively. Data are mean � SD (n � 3). *P < 0.05 vs miR-Scr.

Figure 3 Let-7a directly targeted HMGA2 mRNA.

(A) Schematic showing the predicted let-7a binding site in the HMGA2 30-UTR (wt-HMGA2) and the corresponding mutant sequence

(mut-HMGA2). (B) Luciferase reporter genes activity in fBMFs after co-transfection with vector alone (VA), wild-type (wt) or mutant

(mut) HMGA2 30-UTR reporters plus let-7a mimics or scramble (miR-Scr). Data are mean � SD (n � 3). *P < 0.05 vs miR-Scr. (C)

Protein abundance of HMGA2 in fBMFs (�1; �2) after transfection with let-7a mimics or miR-Scr. (D) Protein abundance of HMGA2 in

BMFs (�1; �2) after transfection with let-7a inhibitor or miR-Scr.
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Notably, overexpressing let-7a markedly impaired key

myofibroblast features in fBMFs, including ECM contrac-

tility, cell motility, and wound healing capacity. We further

identified HMGA2 mRNA as a direct target of let-7a and

revealed a pivotal let-7a/HMGA2 axis that controls myofi-

broblastic characteristics in OSF progression.

Previous study reported that let-7a was significantly

reduced in both the serum and serum-derived extracellular

vesicles (EVs) from patients with chronic hepatitis C, with

the degree of downregulation correlating with hepatic

fibrosis severity.18 These finding suggest that let-7a could

serve as a diagnostic and prognostic biomarker for fibrotic

diseases. Notably, a recent study likewise revealed mark-

edly lower salivary let-7a levels in patients with head and

neck cancer than in healthy individuals.19 Therefore, we

propose that let-7a holds great potential as a non-invasive

biomarker for oral diseases, particularly in the context of

areca nut—related fibrotic pathology and malignant

transformation.

HMGA2 is a chromatin—associated transcriptional regu-

lator implicated in several pathophysiological processes,

such as aging,20 cancer progression,21 and diverse fibrotic

disorders.22—24 For instance, HMGA2 was overexpressed in

renal tissues from patients with diabetic nephropathy, and

silencing HMGA2 reversed the myofibroblastic phenotype

and reduced pro-inflammatory factor secretion in glomer-

ular mesangial cells under high glucose conditions.22,23

Similarly, inhibiting HMGA2 by delivering miR-490-3p

mimics reduced TGF-β—induced myofibroblastic features

in renal epithelial cells in vitro and significantly alleviated

unilateral ureteral obstruction—induced renal injury and

fibrosis in vivo.24 Consistent with these findings, our study

demonstrated that silencing HMGA2 markedly suppressed α-

SMA expression and collagen-gel contractility in fBMFs

(Fig. 4), confirming HMGA2 as a critical pro-fibrogenic fac-

tor in regulating myofibroblastic characteristics during OSF

progression.

HMGA2 has also been recognized as a key regulator of

epithelial-to-mesenchymal transition (EMT).25 The EMT

transcription factor Snail family transcriptional repressor 2

(SNAI2) is among its direct targets, and silencing HMGA2

effectively reduced SNAI2 expression. This, in turn, pre-

vented palmitic acid—induced inflammatory responses and

lipid accumulation in hepatocytes, as well as blocked TGF-

β1—driven hepatic stellate cell activation.26 Myofibroblasts

can originate not only from direct transdifferentiation of

fibroblasts but also through EMT process in multiple cell

types.27 For instance, inhibiting N6-methyladenosine

modification of HMGA2 mRNA reduced its stability,

thereby preventing TGF-β2—induced EMT and the myofi-

broblastic transformation of retinal pigment epithelial

cells.28 Furthermore, HMGA2 overexpression was detected

in the endometrial tissue of patients with intrauterine ad-

hesions (IUA).29 Silencing HMGA2 not only reversed TGF-

β1—induced EMT and the expression of myofibroblastic

markers in endometrial epithelial cells, but also attenuated

endometrial fibrosis in IUA mice.29 Additionally, the long

non-coding RNA (lncRNA) H19 can function as a competing

endogenous RNA (ceRNA) that sequestered let-7a from

HMGA2 mRNA (H19/let-7a/HMGA2 axis) and thereby driven

the EMT and the metastatic properties in tongue squamous

cell carcinoma cells.30 Of note, our previous work demon-

strated that arecoline stimulation induced the myofibro-

blastic transdifferentiation of primary BMFs and is

accompanied by H19 upregulation. This finding may explain

the dose-dependent decrease in let-7a in BMFs upon arec-

oline stimulation (Fig. 1), probably attributable to elevated

H19 acting as a ceRNA that inhibited let-7a. Another study

also found that arsenic exposure promoted M2 macrophage

polarization and increased TGF-β secretion through the

H19/let-7a/c-Myc axis, contributing to pulmonary

fibrosis.31 Taken together, these findings imply that tar-

geting let-7a could not only inhibit the myofibroblastic

characteristics of fBMFs but also suppress pro-fibrotic

phenotypes in other cells involved in OSF, or prevent their

transdifferentiation into myofibroblasts, thereby impeding

the OSF progression and potentially lowering the risk of

malignant transformation.

Let-7a is itself negatively regulated by lin-28 homolog B

(LIN28B), yet it also directly targets LIN28B, forming a

negative feedback loop.32 Disrupting this feedback loop

suppressed HMGA2 expression and prevented

alcohol—induced hepatic stellate cell activation, thus

ameliorating alcoholic hepatic fibrosis in mice.32 Therefore,

we propose that the arecoline-induced upregulation of

LIN28B in head and neck cancer cells reported in our pre-

vious study may result from the interplay between LIN28B

and let-7a.33 Notably, a recent AlphaScreen—based study

Figure 4 Silencing HMGA2 attenuated myofibroblastic characteristics of primary fibrotic buccal mucosal fibroblasts.

(A—B) Protein abundance of α-SMA (A) and relative ECM contractility (B) in fBMFs (�1; �2) expressing Sh-HMGA2 or non-target

control (Sh-Luc.) were assessed using Western blotting (A) and collagen-gel contraction assay (B), respectively. Data are

mean � SD (n � 3). *P < 0.05 vs Sh-Luc.
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showed that epigallocatechin gallate (EGCG) potently

inhibited the LIN28B/let-7a interaction.34 This study

further demonstrated that EGCG significantly up-regulated

let-7a expression in neuroblastoma cells and effectively

reduced their tumorigenic potential in vivo.34 EGCG also

promoted let-7a expression in preadipocytes and sup-

presses excessive cell proliferation via the let-7a/HMGA2

axis.35 In fact, EGCG has been confirmed to prevent the

arecoline-induced transdifferentiation of BMFs into myofi-

broblasts.36,37 Therefore, our future research is warranted

to elucidate the precise role of the LIN28B/let-7a/HMGA2

feedback loop in arecoline-related myofibroblast trans-

formation and OSF progression.

As reported, administering engineered let-7a—enriched

EVs derived from Wharton’s jelly mesenchymal stem cells

(WJ-MSCs) significantly suppressed macrophage infiltration

and collagen deposition in rat lung tissues, thereby

improving pulmonary function in a rat model of acute lung

injury (ALI).38 This study also showed that co-culturing with

these engineered EVs could block TGF-β/Smad signaling

and suppress the myofibroblastic characteristics in idio-

pathic pulmonary fibrosis patient-derived lung fibroblasts

without affecting cell proliferation,38 supporting the safety

of exogenous let-7a for therapeutic purposes. Indeed,

endogenous let-7a has been confirmed to be preferentially

packaged into EVs in MSCs.39—41 Intra-capsular delivery of

bone-marrow MSC-EVs relieved suture-induced shoulder

capsular fibrosis and restored joint mobility in mice,39

whereas adipose-derived MSC-EVs exerted a comparable

anti-fibrotic effect in bleomycin-induced scleroderma.40

Mechanistically, MSC-EVs—let-7a directly targets TGF-βR1

in recipient fibroblasts, which attenuated Smad signaling

and diminished myofibroblastic features, such as α-SMA

expression, collagen production, and collagen-gel contrac-

tility.39,40 In a spinal cord injury rat model, administration

of BMSC—derived EVs enriched with let-7a promoted

neuronal repair and limited excessive astroglial scarring by

regulating let-7a/HMGA2 axis in astrocytes.41 Collectively,

these findings indicate that let-7a mitigates pathological

progression across multiple fibrosis and tissue-repair

models, highlighting its therapeutic promise for OSF.

Although this study is the first to identify the significant

role of the let-7a/HMGA2 axis in regulating myofibroblast

activation in OSF, our findings are primarily obtained from

in vitro investigations, which limit the full understanding of

the pathology progression in vivo. Nevertheless, our current

findings provide a foundation for subsequent translational

research. Specifically, we have demonstrated that let-7a

expression was significantly down-regulated in fBMFs and

exhibited a dose-dependent decrease in BMFs exposed to

arecoline treatment. Crucially, the exogenous transfection

of let-7a mimics markedly attenuated the myofibroblastic

characteristics of fBMFs, supporting the functional impor-

tance of let-7a in controlling the persistence of myofibro-

blasts. Therefore, future research will prioritize the

validation of the correlation between let-7a and HMGA2

expression and OSF progression in preclinical animal models

and larger patient cohorts. Furthermore, it will be imper-

ative to validate the therapeutic potential of targeting the

let-7a/HMGA2 axis within these in vivo settings. Such stra-

tegies could include restoring let-7a expression or silencing

HMGA2, with a particular focus on their efficacy in

inhibiting areca nut-induced fibrotic pathology and pre-

venting subsequent malignant transformation. These could

bridge the current translational gap and advance these

promising findings towards potential clinical applications in

OSF management.
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